
978-1-4673-9406-2/15/$31.00 c©2015 European Union

MiCAP: A custom Reconfiguration Controller for

Dynamic Circuit Specialization

Amit Kulkarni

ELIS department, Computer Systems Lab,

Ghent University,

Sint-Pietersnieuwstraat 41,

Ghent B-9000, Belgium

Email:Amit.Kulkarni@UGent.be

Vipin Kizheppatt

School of Engineering Sciences,

Mahindra Ecole Centrale,

Hyderabad, Telangana, India - 500043

Email: Vipin.Kizheppatt@mechyd.ac.in

Dirk Stroobandt

ELIS department, Computer Systems Lab,

Ghent University,

Sint-Pietersnieuwstraat 41,

Ghent B-9000, Belgium

Email: Dirk.Stroobandt@UGent.be

Abstract—Field Programmable Gate Arrays (FPGAs) belong
to a class of semiconductor devices whose hardware can be
changed according to our needs. The configuration data (bit-
streams) of an FPGA define the functionality of the FPGA. There-
fore, a user can design the hardware and change it by modifying
the bitstreams for a given set of requirements. One way of doing
this is using Dynamic Circuit Specialization (DCS), an FPGA
implementation technique that is optimized for a parameterized
design. A design is said to be parameterized if some of its inputs
are infrequently changing compared to the rest. In the DCS
technique, for every change in parameterized input values, a new
specialized circuit is generated during run-time and the FPGA is
reconfigured accordingly. The time taken to reconfigure the FPGA
with a specialized circuit is called reconfiguration time and is a
major overhead of the DCS technique. To reduce this overhead,
we propose an efficient custom reconfiguration controller built
with a simple architecture which is customized to implement DCS.
Our results indicate an increase in the reconfiguration speed by
≈ 17% and the FPGA resource utilization is reduced by ≈ 50%
compared to the standard Xilinx reconfiguration controller.

I. INTRODUCTION

Partial Run-time reconfiguration is the ability to modify
some parts of FPGA logic blocks, while the rest of the logic
remains active. Dynamic Circuit Specialization (DCS) is a
form of run-time reconfiguration used to implement a parame-
terized application. Instead of implementing these parameters
as regular inputs, in the DCS approach they are implemented as
constants and the design is specialized for these constants. For
every change in parameter values, the design is re-optimized
for new constant values by micro-reconfiguring the FPGA.
Micro-reconfiguration is a fine-grain form of reconfiguration
used in DCS.

In contrast to other FPGAs, Xilinx FPGAs have been
partial reconfigurable since quite some years. The FPGA archi-
tectures contain a set of components to execute the reconfigura-
tion, such as the Internal Configuration Access Port (ICAP), a
data access bus (Processor Local Bus or Advanced eXtensible
Interface bus) and an embedded processor (PowerPC or ARM
cortex A9). The ICAP is a built in hardware macro, which
has direct access to the configuration memory and it requires
a reconfiguration controller that is built as part of the design
to manage bitstream movement between the ICAP macro and
the processor. The Hardware ICAP (HWICAP, an Intellec-
tual Property block provided by Xilinx) is a reconfiguration
controller that contains a complex state machine and a First

In First Out (FIFO) buffer designed to access the bitstreams
from the configuration memory of the FPGA. The efficiency of
these components affect the reconfiguration speed of DCS. The
“LUT reconfiguration speed” is defined as the number of Look
Up Tables (LUTs) reconfigured per unit of time. Conversely,
the “LUT reconfiguration time” is the time taken by the system
to reconfigure a LUT in a design.

Investigations have shown that reconfiguration time is a
major limiting factor for the DCS implementation on a Xilinx
FPGA [1]. The main reason for the slow reconfiguration speed
is the complexity of the HWICAP architecture and the lower
communication bandwidth between the processor and the
ICAP controller, resulting in a data throughput of 19 MBps [2].
We proposed a novel idea for improving the reconfiguration
speed of DCS [3]. However, this improvement comes at the
cost of the application’s performance (the maximum clock
the application design can support); an average of 6% of
the application’s performance needs to be compromised. This
approach may not be suitable if the application’s performance
is an important metric.

Therefore, in order to improve the reconfiguration speed
of DCS without affecting the application’s performance we
propose a custom reconfiguration controller called MiCAP,
built on a Xilinx 7 series FPGA (Zynq-SoC). MiCAP has a
much simpler controller architecture than the HWICAP.

The rest of this paper is organized as follows: the state of
the art is described in Section II. In Section III, we explain
the architecture of the Xilinx ICAP primitive called ICAPE2
used in the Xilinx 7 series FPGAs. In Section IV, we describe
the architecture of our custom reconfiguration controller called
MiCAP, followed by the description of the experimental setup
in Section V. In Section VI, we present our results and discuss
the effect of the custom reconfiguration controller on the
reconfiguration speed of DCS. We finally conclude this paper
in Section VII.

II. STATE OF THE ART

Dynamic Circuit Specialization (DCS) enables us to im-
plement a parameterized application with less FPGA resources
(mainly Look Up Tables) compared to the classic static (con-
ventional) implementation. An average reduction of 42% in
FPGA resources is observed for an 8-bit, 16-taps adaptive
Finite Impulse Response (FIR) filter application. This helps

Fig. 1. Dynamic Circuit Specialization tool flow.

in shortening the critical path of the design and hence it also
improves the filter’s performance[4].

The tool flow that implements DCS consists of two stages:
a generic stage and a specialization stage. In the generic
stage, a parameterized application (or design) described in a
Hardware Description Language (HDL) is processed to yield
a Partial Parameterized Configuration (PPC) and a Template
Configuration (TC) as depicted in Figure 1. The PPC contains
bitstreams expressed as Boolean functions of input parameters
of a parameterized design. The TC contains static ones and
zeros hence they are used for the non-reconfigurable parts of
the problem. Other members of our research group explained
how a parameterized design is mapped onto virtual Look Up
Tables (LUTs) called Tunable Look Up Tables (TLUTs) [5].
TLUTs are the intermediate representation of physical LUTs of
an FPGA with truth table entries (a part of the bitstreams) that
are expressed as Boolean functions of the parameters instead
of as regular bitstreams. Therefore, during the reconfiguration,
only the truth table entries of the TLUTs are replaced with the
specialized bits that are generated during the specialization
stage.

In the Specialization stage, the Boolean functions are
evaluated for specific values of the parameters thus generating
specialized bitstreams. For every infrequent change in parame-
ter values, the Boolean functions are evaluated by a Specialized
Configuration Generator (SCG). The SCG can be implemented
on an embedded processor such as the PowerPC or the ARM
cortex-A9 present within the FPGA core.

The SCG reconfigures the FPGA via a configuration inter-
face called HWICAP, by swapping the specialized bitstreams
into the FPGA configuration memory. The HWICAP encap-
sulates the ICAP primitive (port) of the FPGA and forms
a controller that orchestrates the swapping of specialized
bitstreams via the interface port ICAP. The bitstreams are
accessed in the form of frames, and a frame is defined as the
smallest addressable element of an FPGA configuration data.
Each frame has its unique frame address that can be used to
point to the frame during the reconfiguration. The software
to implement DCS is available as an open source project on
GitHub [6].

A. The HWICAP driver

The HWICAP supports a software driver function called
“XHwIcap_SetClbBits” to perform the reconfiguration.
This function accepts two crucial function arguments:

1) Location co-ordinates of a TLUT: This information is
used to generate the frame address that is used to point to
the frame that contains truth table entries of the TLUT.

2) Truth table entries: These are the specialized bits gener-
ated after the specialization stage of the DCS tool flow.
The TLUT truth table entries need to be overwritten with
these specialized bits.

The reconfiguration takes place in 3 major steps:

1) Read frames: using the frame address, a set of four
consecutive frames containing the truth table entries of
a TLUT are read from the configuration memory.

2) Modify frames: the current truth table entries of a TLUT
are replaced by the specialized bits. The modified frames
contain specialized bitstreams.

3) Write-back frames: using the same frame address, the
modified four frames are written back to the configuration
memory, thus accomplishing the micro-reconfiguration.

Therefore, a reconfiguration controller in this case should
be capable of reading and writing the frames from the configu-
ration memory and a processor needs to be involved to modify
the frame contents.

The micro-reconfiguration incurs 3 major costs. These costs
are major drawbacks of DCS:

1) PPC memory size: memory space required to store all the
Boolean functions of the parameterized application.

2) Evaluation time: time taken by the SCG to evaluate the
Boolean function for a specific set of parameter values.

3) Reconfiguration time: time taken to update all the TLUTs
of a parameterized design with the specialized bits.
In other words, time taken to accomplish the micro-
reconfiguration.

The reconfiguration time is a major overhead of the DCS
approach. Using the HWICAP, the time taken to reconfigure
one TLUT is 230µs. The main objective of the custom Micro-
reconfigurable Configuration Access Port (MiCAP) controller
is to reduce the reconfiguration time and facilitate a faster run-
time reconfiguration compared to the standard HWICAP.

B. Related work

A number of custom reconfiguration controllers imple-
mented on the AXI bus and a high speed open source
controller [7] have been proposed for the efficient partial
reconfiguration that offer a high throughput ≈ 400 MBps.
ZyCAP [8] is a high speed controller built with AXI-DMA
that makes use of high performance ports (HP) for a high
speed data (frames) transfer between the DRAM and the
Programmable Logic (PL) region of the Zynq-SoC. However,
all of these controllers (implemented on the AXI bus) do not
support the configuration read-back (which is very essential for
DCS) and provide high performance only when the bitstream
size is very large. The controllers require the bitstreams to be
stored in dedicated BRAM or external memory. This means

Fig. 2. ICAP primitive in Zynq-SoC.

the controllers are suitable only for pre-prepared bitstreams
following the standard Xilinx PR flow.

In our case, the bitstreams are generated dynamically by
modifying the frame content. Therefore, we need a lite-weight,
read-write capable, low overhead controller. We used the idea
of the open source controller of [7] to build a custom controller
for micro-reconfiguration. We have designed the MiCAP with
an efficient architecture comprising of a simple state machine
along with few memory elements. With the help of MiCAP the
configuration data of the Zynq-SoC FPGA can be accessed
faster than the standard HWICAP. The MiCAP’s detailed
architecture is explained in Section IV.

III. INTERNAL CONFIGURATION ACCESS PORT (ICAP /
ICAPE2)

The Static Random Access Memory (SRAM) cells of
LUTs, Switch blocks, Connection blocks, Block Random
Access Memory (BRAM) blocks and Digital Signal Processing
(DSP) blocks together form the configuration memory of an
FPGA fabric. The Xilinx ICAP primitive provides internal
access to the configuration memory of the FPGA. This in-
terface can be used to download configuration data into the
configuration memory during run-time. It is also possible to
read the configuration data from the configuration memory.
The ICAP can also be used for reading the status register of
the configuration memory. The structure of the ICAP interface
with the FPGA configuration memory is depicted in Figure 2.

The ICAP primitive contains two separate data ports for
reading (O) and writing (I) the data. Each bus supports a
data width of 32-bits. It has a clock input (CLK) and an
active-low ICAP enable (CSIB) input. The ICAP primitive can
support a maximum clock frequency of 100 MHz for a reliable
implementation. The CSIB is an active-low, chip enable signal
used to turn the ICAP ON/OFF. There is a read/write select
input signal (RDWRB) used to select the direction of the data.
By setting the “RDWRB” signal to high, the data can be read
from the configuration memory and to write the data back to
the configuration memory one has to set the signal to low. The
data is written at the rising edge of the clock. Therefore, the
writing of configuration data can be controlled by either the
clock or the CSIB signal. There is no “Busy” signal, in contrast
to the ICAP primitive present in the Virtex-5 and Virtex-6. The
validity of the read data is checked deterministically [9].

To access the configuration bitstreams of an FPGA, a series
of commands has to be written to the ICAP’s input for every
rising edge of the clock cycle. These commands help the user
to orchestrate the ICAP to read the configuration data or write
the configuration data to the configuration memory. Therefore,

ICAP

State machine

Input Buffer

(FIFO)

Output Buffer

(FIFO)

ICAPE2

Macro

Din [31:0] Dout [31:0]

Dout [31:0]

Rd_en

Wr_en Din [31:0]

Wr_en

Rd_en

R
D

W
R

B

C
S

IB

O
 [
3
1
:0

]

I
[3

1
:0

]MiCAP_en

MiCAP_rd_en

MiCAP_rd_wr_done

Parameterized

bitstreams

(Frames)

ICAP

commands

+

Specialized

Bitstreams

Fig. 3. MiCAP architecture.

to start the access (either read or write) of the configuration
frames, it is mandatory to send the ICAP commands first.
Therefore, the access begins with the ICAP write activity. The
frame address is placed at a certain location in between these
commands to let the ICAP know which frames have to be
accessed.

With a clock input of 100 MHz and a data width of 32 bits,
the maximum throughput of the ICAP is 400 MBps [10]. How-
ever, the HWICAP that encapsulates the ICAP port supports
only 19 MBps due to its inefficient architecture that contains
a complex state machine and a communication overhead
between the ICAP and the processor which is unnecessary for
DCS. Therefore, we need a lite-weight controller to improve
the reconfiguration and overall performance of DCS.

ICAP Commands

To access the configuration memory of an FPGA, a series
of commands have to be written to the ICAP’s input for every
rising edge of the clock cycle. The ICAP read command
consists of a read command header that contains the frame
address to point to the corresponding frame and a read com-
mand tail to desynchronize and safely close the ICAP after
reading the bitstreams. Therefore, to read the bitstreams, an
ICAP read command header has to be sent to the ICAP and
then capture the bitstream data followed by sending the ICAP
read command tail to desynchronize the ICAP.

Similarly, the ICAP write command consists of a write
command header that contains the frame address and a write
command tail to desynchronize the ICAP. To write the con-
figuration data into the configuration memory, an ICAP write
command header has to be sent to the ICAP. Next, the ICAP
is ready to accept the frames that are to be written into the
FPGA configuration memory. Finally, we close the ICAP by
sending the write command tail.

IV. CUSTOM RECONFIGURATION CONTROLLER: MICAP

The basic architecture of MiCAP is shown in Figure 3.
The MiCAP consists of 4 major parts: two asynchronous FIFO
buffers, an ICAP state machine and the ICAP primitive. All
the elements of the MiCAP are synchronized by a common
clock with a frequency of 100 MHz.

1) Input Buffer: This is an asynchronous FIFO buffer that
holds the ICAP read and write commands along with

specialized configuration data which is to be written into
the configuration memory. The application software is re-
sponsible to store all the configuration data into the input
buffer before triggering the write activity of the MiCAP.
Therefore, the input buffer acts as the configuration data
source for the MiCAP’s write activity.

2) Output Buffer: This is also an asynchronous FIFO buffer
that holds the configuration data fetched by the ICAP
primitive during the read activity. All the data read from
the configuration memory via the ICAP is stored in the
output buffer. Therefore, the output buffer acts as a sink
to the MiCAP’s read activity. Once the data is ready, the
processor has to read the frames from the output buffer.

3) ICAP primitive: This is a design element that gives access
to the configuration data of the FPGA. Using this element
the commands and data can be read or written into
the FPGA configuration memory. The ICAP primitive
architecture of the Zynq-SoC is explained in Section III.

4) ICAP State machine: This is the brain of the MiCAP.
It contains multiple states that orchestrate the MiCAP’s
read and write activity. The state machine contains 3
major states: Wait state, Read state and Write state. The
description of each of the states is as follows.

State machine

a) Wait state: In this state, the MiCAP waits until all the data
(frames + ICAP commands) are filled into the input FIFO.

b) Read state: The MiCAP’s read activity is triggered by the
processor by setting “MiCAP_en” and “MiCAP_read_en”
signals to high. In this state, first the RDWRB signal is set
to high and then the ICAP primitive is enabled by setting
the CSIB signal to a low value. The read command present
in the input buffer is fetched and written to the ICAP’s
input port. The command is written for every rising edge of
the clock. Once the read command is sent, the ICAP starts
fetching the configuration data. The frames fetched from
the ICAP are written into the output buffer. Once the read
activity is completed, the ICAP is disabled by setting the
CSIB signal to high. The “MiCAP_rd_wr_done” signal is
set to high once the MiCAP’s read activity is accomplished.

c) Write state: The MiCAP’s write activity is triggered by
the processor by setting the “MiCAP_en” signal to high
and set the “MiCAP_read_en” signal to low. In this state,
first the RDWRB signal is set to low and then the ICAP
primitive is enabled by setting the CSIB signal to low.
The write command is fetched from the input buffer and
the command is written to the ICAP’s input port. Once
the write command is sent, the ICAP believes that next
incoming data is the configuration data that has to be
written into the configuration memory of the FPGA. Now
the state machine reads the data from the input buffer
and writes the data into the ICAP input port. The ICAP
continues to write the data sent from the input buffer into
the configuration memory until the input buffer is empty.
The “MiCAP_rd_wr_done” signal is set high once the
MiCAP’s write activity is accomplished.

We propose two versions of the MiCAP: the Basic MiCAP
and the MiCAP with single port RAM. The latter version of the
MiCAP contains an extra single port RAM that holds the ICAP
read and write commands well before the data transaction

ICAP

State machine

Input Buffer

(FIFO)

Output Buffer

(FIFO)

Single-port RAM

ICAP RD-WR Commands

ICAPE2

Macro

Din [31:0] Dout [31:0]

Dout [31:0]

Rd_en

Wr_en Din [31:0]

Wr_en

Rd_en

Din [31:0]

(Frame Address)

Address

Counter [31:0]

Dout [31:0]Wr/Rd

R
D

W
R

B

C
S

IB

O
 [
3
1
:0

]

I
[3

1
:0

]MiCAP_en

MiCAP_rd_en

MiCAP_rd_wr_done

Fig. 4. MiCAP with single port RAM.

begins. These commands are non-volatile in contrast to the
data in the input buffer, hence the MiCAP can make use
of these commands multiple times as needed. Therefore, the
input buffer (FIFO) is used to hold only the specialized
bitstreams (frames) that replace the stale frames present in the
configuration memory. This saves significant amount of time
during the reconfiguration since only the configuration frames
are transferred between Processing System (PS) and PL of the
Zynq-SoC.

Figure 4 shows the MiCAP with single port RAM. The
state machine handles the multiplexing of data between the
frames from the input buffer and the ICAP commands from
the single port RAM to establish the proper reconfiguration
process. However, this version of the MiCAP utilizes more
FPGA resources (LUTs and FFs) compared to the basic
MiCAP.

V. EXPERIMENTAL SETUP

In this Section, we describe the experimental setup of the
parameterized design implemented using DCS with MiCAP.
We implemented the MiCAP on a self-reconfigurable DCS
platform and measured the throughput.

A. FIR filter

We used a 16-taps, 8-bit adaptive Finite Impulse Response
(FIR) filter as a parameterized design implemented using
DCS [3]. The filter taps are parameterized. Hence, for every
infrequent change in coefficient input values (C1 to C16),
a specialized bitstream is generated. The FIR filter is built
with sixteen 8-bit multipliers (implemented using LUTs of the
device) and they consume 384 TLUTs of the Zynq-SoC FPGA.
This filter can be used for a DSP application in which FIR
filters are used to realize the filtering of unwanted bandwidth
of signals. If the frequency of the bandwidth is required to
change infrequently then a parameterized FIR implementation
would suit better than the classic FIR implementation.

B. The self-reconfigurable platform for DCS

We used a self-reconfigurable platform [11] used for build-
ing a parameterized FIR filter using DCS. The MiCAP is used
as a configuration interface. The PPC Boolean functions are
stored in the DRAM memory of the PS and all the actions of

TABLE I. RECONFIGURATION SPEED COMPARISON BETWEEN

HWICAP AND MICAP

Controller

TLUT

Reconfiguration time

(µs)

Throughput

(MBps)

Total

Reconfiguration

time(ms)

AXI-HWICAP 230 19 88.3

MiCAP 210 22 80.6

MiCAP with

single port RAM
194 23 74.4

the Micro-reconfiguration are controlled by the ARM Cortex-
A9 processor. Therefore, the user can use a simple program
to run software on the processor to control and measure the
reconfiguration activity. The whole system is connected using
the AXI-lite bus for the data transfer.

C. Performance measurement of MiCAP

The parameterized FIR filter was executed on a self-
reconfigurable platform. The soft timers were deployed to mea-
sure the reconfiguration time. The FIR filter coefficients were
changed manually by the user to simulate the reconfiguration.
With the help of soft timers, the time taken to reconfigure one
TLUT was measured. The resource consumption of the MiCAP
was also measured by using the Xilinx implementation report.
Finally, we studied the impact of MiCAP’s reconfiguration
speed on the overall DCS system.

VI. RESULTS AND DISCUSSION

A. Reconfiguration Speed

The data transaction occurs between the PS and PL regions
of the Zynq-SoC to accomplish the micro-reconfiguration.
The data transfer occurs via general purpose ports (GP) of
the Zynq-SoC. The DCS reconfiguration time for a single
TLUT using different reconfiguration controllers is tabulated
in Table I.

Clearly, the time taken to reconfigure one TLUT using
basic MiCAP is ≈ 10 % less than the HWICAP. The reduction
in reconfiguration time was because of the optimized state
machine built within the MiCAP. However, by deploying a
single port RAM to store the ICAP read and write commands
instead of filling the commands by the processor to input buffer
FIFO, the reconfiguration speed was increased by ≈ 17 %
compared to the HWICAP. The main reason for the increase is
that we bypassed the data (ICAP commands) transfer between
the PS and PL via the GP port.

The reconfiguration time of the DCS with MiCAP can be
split into three parts:

1) Read activity time: It is the time taken to fetch 5 frames (1
dummy frame + 4 frames) from the configuration memory
and transfer the data to the ARM processor via the GP
ports.

2) Write activity time: It is the time taken to write 5 frames
(4 frames + 1 dummy frame) from the processor to the
configuration memory. The frames are transfered from the
processor to the input buffer (FIFO) of the MiCAP via
the GP ports.

3) Modify activity time: It is the time taken to evaluate
the PPC boolean function and modify the bitstreams to
generate specialized bitstreams.

TABLE II. TIME EXPENDITURE

Micro-reconfiguration Task Time (µs)

Read activity 97

Write activity 95

Boolean evaluation and Modify activity 18

Total 210

TABLE III. RESOURCE UTILIZATION

Controller FF LUTs BRAMs Max. Clock freq. (MHz)

AXI-HWICAP 675 500 1 100

MiCAP 221 290 0 100

MiCAP with RAM 234 330 0 100

Table II shows the time distribution of the reconfiguration
time for a TLUT. Clearly, the time taken to transfer the data
between the processor and the PL region holds the major
stake in the reconfiguration time. This is due to the inefficient
data transfer via the general purpose (GP) ports of the Zynq-
SoC. To counter this problem, we can make use of the higher
performance ports (HP). However, the HP ports cannot be
accessed by the ARM processor directly. Therefore, a Direct
Memory Access (DMA) module needs to be instantiated. The
DMA uses the HP ports to transfer the data between the PL
and the DRAM memory of the PS. This is planned for future
work.

B. Resource utilization

The FPGA resource utilization of the reconfiguration con-
trollers is tabulated in Table III. Clearly, the MiCAP utilizes
67% less Flip Flops than the HWICAP. We also observe a
reduction in LUT utilization by 42%. In addition there were no
BRAMs utilized by the MiCAP in contrast to the HWICAP.
In [12], authors have shown that the HWICAP is the most
power hungry part of DCS. Since the MiCAP consumes less
FPGA resources, we envisage that power consumption by the
MiCAP is less than the HWICAP and thus proving its power
efficiency.

C. Functional Density

The overall effect of the improvement in reconfiguration
speed on the application can be best explained using the
functional density curve. The functional density (Fd) is defined
as the number of computations (N) per unit area (A) and unit
time (T) as shown in Equation 1.

Fd =
N

AT
(1)

In our experiment, the number of computations ‘N’ is
all the operations executed by the FIR filter. The value of
‘A’ depends on the resources of the FPGA (mainly TLUTs).
The value of ‘T’ is the sum of the filter execution time, the
reconfiguration time and the time taken to specialize. The
functional density curve is plotted against the rate of change of
parameter values (i.e., the number of clock cycles in between
two parameter changes). The functional density shows the
efficiency of the implementation as a function of how fast the
parameter values change.

The functional density curve of the FIR filter with four
different implementations (is shown in Figure 5):

Fig. 5. Functional Density curves.

1) Generic (without reconfiguration controller): FIR filter
implemented without DCS.

2) HWICAP: FIR filter implementation with DCS using
HWICAP.

3) Basic MiCAP: FIR implementation with DCS using basic
MiCAP.

4) MiCAP with single port RAM: FIR implementation with
DCS using MiCAP with single port RAM.

In Figure 5, the x-axis represents the average time (in clock
cycles) between two parameter value changes. The Generic
implementation without reconfiguration has no variation in
the functional density since it uses a fixed number of FPGA
resources. The curve for DCS implemented with MiCAP rises
before the conventional DCS because of the improvement
in the reconfiguration speed and hence the parameter values
are allowed to change faster than before with the same gain
in area. Similarly, the functional density curve for the DCS
implementation using MiCAP with single port RAM rises just
before the functional density curve with basic MiCAP due
to the slight improvement in reconfiguration speed. The DCS
with basic MiCAP and MiCAP with single port RAM has
less implementation area (less number of LUTs) therefore, the
functional density of each is much higher than the DCS with
HWICAP.

VII. CONCLUSION

The reconfiguration controller plays an important role in
partial reconfiguration and in particular in the DCS implemen-
tation technique. The HWICAP supplied by Xilinx can be used
as a reconfiguration controller to implement the conventional
DCS technique. However, the HWICAP suffers from a high
communication overhead between processor and the ICAP
resulting in inefficient performance. This inefficient controller
architecture affects the reconfiguration speed and hence the
HWICAP can provide a maximum data throughput of only
19 MBps where as the ICAP itself could potentially handle
400 MBps. Therefore, the reconfiguration speed is one of the
major limitations of DCS. To counter this problem, we have
proposed a custom reconfiguration controller called MiCAP.
The MiCAP is built with an optimized state machine that
makes the controller simple enough to support a data through-
put of 23 MBps. Therefore, data throughput is significantly
increased by 21% compared to the HWICAP. This helps to
increase the reconfiguration speed of DCS by 17%. We have
also discussed the overall effect of this improvement on the
parameterized application by plotting the functional density

curve. Improving the reconfiguration speed leads to flexibility
in the parameterized design which allows the parameters to
change more frequently compared to the DCS implementation
using the HWICAP.

The MiCAP is a custom reconfiguration controller designed
to implement DCS. The source code can be accessed at [13].

VIII. FUTURE WORK

In our future experiments, we would like to deploy the
AXI-DMA component to the MiCAP. The DMA uses high
performance ports (HP) of the Zynq-SoC for the high speed
data transfer. This would reduce the time expenditure of the
data transfer between PS and PL regions. Therefore, by making
use of the DMA we expect a drastic improvement in the
reconfiguration speed.

REFERENCES

[1] A. Kulkarni, K. Heyse, T. Davidson, and D. Stroobandt, “Performance
evaluation of Dynamic Circuit Specialization on Xilinx FPGAs,” in
FPGAworld Conference 2014, Proceedings. Stockholm, Sweden:
Association for Computing Machinery, 2014, pp. 1–6.

[2] “Xilinx LogiCORE IP AXI HWICAP (v2.02.a) (ds817),”
http://www.xilinx.com/support/documentation/ip_documentation/
axi_hwicap/v2_02_a/ds817_axi_hwicap.pdf, accessed: 2014-05-14.

[3] A. Kulkarni, T. Davidson, K. Heyse, and D. Stroobandt, “Improving re-
configuration speed for Dynamic Circuit Specialization using Placement
Constraints,” in ReConFigurable Computing and FPGAs (ReConFig),

2014 International Conference on, Dec 2014, pp. 1–6.

[4] K. Bruneel, W. Heirman, and D. Stroobandt, “Dynamic data folding
with parameterizable configurations,” ACM Transactions on Design

Automation of Electronic Systems, vol. 16, no. 4, 2011.

[5] K. Heyse, T. Davidson, E. Vansteenkiste, K. Bruneel, and D. Stroobandt,
“Efficient implementation of virtual coarse grained reconfigurable ar-
rays on FPGAs,” in Proceedings of the 23rd International Conference

on Field Programmable Logic and Applications. Piscataway, NJ, USA:
IEEE, 2013, pp. 1–8.

[6] K. Bruneel, K. Heyse, A. Kulkarni, and D. Stroobandt, “TLUT tool
flow based Dynamic Circuit Specialization,” 2012. [Online]. Available:
https://github.com/UGent-HES/tlut_flow

[7] K. Vipin and S. Fahmy, “A high speed open source controller for FPGA
partial reconfiguration,” in Field-Programmable Technology (FPT),

2012 International Conference on, Dec 2012, pp. 61–66.

[8] K. Vipin and S. Fahmy, “Zycap: Efficient partial reconfiguration man-
agement on the Xilinx Zynq,” Embedded Systems Letters, IEEE, vol. 6,
no. 3, pp. 41–44, Sept 2014.

[9] “7 Series FPGAs Configuration User Guide (ug470),” http://www.xilinx.
com/support/documentation/user_guides/ug470_7Series_Config.pdf,
accessed: 2014-05-14.

[10] S. Hansen, D. Koch, and J. Torresen, “High speed partial run-time
reconfiguration using enhanced ICAP hard macro,” in Parallel and

Distributed Processing Workshops and Phd Forum (IPDPSW), 2011

IEEE International Symposium on, May 2011, pp. 174–180.

[11] K. Bruneel, F. Abouelella, and D. Stroobandt, “Automatically mapping
applications to a self-reconfiguring platform,” in Design, Automation

Test in Europe Conference Exhibition, 2009. DATE ’09., April 2009,
pp. 964–969.

[12] A. Kulkarni, R. Bonamy, and D. Stroobandt, “Power Measurements
and Analysis for Dynamic Circuit Specialization,” in ReConFigurable

Computing and FPGAs (ReConFig), 2015 International Conference on,
Dec 2015, pp. 1–6.

[13] A. Kulkarni and D. Stroobandt, “MiCAP: A custom Reconfiguration
Controller for Dynamic Circuit Specialization,” 2015. [Online].
Available: https://github.com/UGent-HES/MiCAP

