
An FPGA-based High-Throughput Stream Join
Architecture

Charalabos Kritikakis, Grigorios Chrysos, Apostolos Dollas, Dionisios N. Pnevmatikatos
Microprocessor and Hardware Laboratory

Technical University of Crete
Chania, Greece

babis_k4@hotmail.com, gregory.chrysos@gmail.com, dollas@ece.tuc.gr, pnevmati@ece.tuc.gr

Abstract—Stream join is a fundamental operation that
combines information from different high-speed and high-volume
data streams. This paper presents an FPGA-based architecture
that maps the most performance-efficient stream join algorithm,
i.e. ScaleJoin, to reconfigurable logic. The system was fully
implemented on a Convey HC-2ex hybrid computer and the
experimental performance evaluation shows that the proposed
system outperforms by up to one order of magnitude the
corresponding fully optimized parallel software-based solution
running on a high-end 48-core multiprocessor platform. The
proposed architecture can be used as a generic template for
mapping stream processing algorithms to reconfigurable logic,
taking into consideration real-world challenges.

Keywords— stream processing; ScaleJoin; join operator;
FPGA architecture

I. INTRODUCTION

The data mining research area focuses on the extraction of
previously unknown and potentially useful information from
raw data. Modern data mining applications require real-time
processing of high-volume and high-speed data streams to
enhance the value of existing information resources. A
fundamental operator for the data stream mining is the stream
join operator. Stream join is used for correlating the
information from different streams. As the stream join operator
is computationally expensive, there are many works that focus
on accelerating their processing workload using distributed or
parallel frameworks. The ScaleJoin algorithm [1] is a new,
parallel formulation of the stream join operator that uses a
shared-memory framework. The algorithm offers really high
performance results, outperforming any other state-of-the-art
stream join implementation.

This work presents the first implementation of the most
performance efficient stream join operator, i.e. ScaleJoin, on a
reconfigurable platform with impressive performance results
when compared to highly optimized codes running on
multiprocessors. The contributions of this work are: i) this is
the first hardware-based work, to the best of our knowledge,
which proposes a reconfigurable architecture for the ScaleJoin
stream join algorithm, ii) the proposed hardware-based
architecture is scalable and generic as it can be used as
template for many other problems that correlate streaming data,
iii) the proposed architecture is extensible, as it takes advantage
of the parallelism that reconfigurable hardware can offer and
iv) the implemented system achieves at least 4x better

throughput data rates vs. the fastest stream join multi-threaded
solution and at least one order of magnitude higher processing
rates than any other multi-core published solution.

The rest of the paper is organized as follows. Section II and
III make an introduction on the stream join problem and the
ScaleJoin algorithm. Section IV presents the proposed
hardware-based architecture of the ScaleJoin algorithm.
Section V evaluates the performance of the proposed
architecture and compares its performance results with the
performance of previously presented works. Section VI
presents the related software- and hardware-based works on
stream join operation, and Section VII draws the conclusions of
this work.

II. STREAMS AND STREAM JOIN

The streams consist of flowing tuples, which are modeled
as two components <v, t>, where v is a value (or a set of values
depending on the application) and t is the timestamp, which
defines the order in the stream sequence. The theoretical
infinite size of the streams and the need for real-time
processing leads to the limitation of processing on a subset of
the incoming tuples, i.e. processing over sliding time-based
windows.

The stream join operation takes place on streaming in-order
timestamped tuples. During the join process between 2 streams,
i.e. R and S, all the tuples from the R stream are “correlated”-
compared with all the tuples from the S stream inside the given
time-based window. Whenever the “correlation” between two
tuples is “successful”, a new output tuple is created, combining
the attributes of both input tuples. The stream join algorithm
follows the three-step procedure, which is proposed by Kang et
al. [2]. Let WS and WR be the time windows, which contain the
tuples from S and R streams, respectively, and a given time
window size W, the three-step procedure is: i) compare tR with
all tS ∈ WS, ii) add tR to WR and iii) remove all ti ∈ WR : ti.ts <
tR.ts − W.

The stream join operator has high computational cost.
Given that the tuple rate is T tuples per second for both
processing streams and the processing window size is W
seconds, the system maintains W x T tuples, in total. Hence, T
tuples have to be compared with W x T tuples every second.
Thus, the total computations for the tuples of each stream are
about W x T2 and the aggregate computational cost for both
streams is 2 x W x T2.

Fig. 1. Software-based Scalejoin algorithm implementation [1].

III. SCALEJOIN ALGORITHM

The ScaleJoin algorithm innovation is based on the abstract
data type, namely ScaleGate. The ScaleGate can process in
parallel various numbers of streams in a lock-free way. Also, it
distributes the incoming tuples to the parallel threads without
the need of central coordination. Last, it is, also, used for
collecting the correlated output tuples from the parallel threads
to the final output.

The main processing unit for the ScaleJoin algorithm
software-based implementation is the Processing Unit (PU). As
referred above, the ScaleJoin algorithm distributes the
processing workload to n parallel PUs, which means that
approximately 1/n of the overall comparisons is executed by
each PU.

As shown in Fig. 1, the software implementation has 3
main modules. Firstly, the input ScaleGate module, i.e. SGin,
receives the timestamp-sorted input tuples from a varying
number of physical input streams and merges them into a
single-timestamp sorted stream of tuples. Next, the sorted
tuples are passed to the parallel processing units, where the
main processing takes place. Lastly, the output tuples are sent
to the SGout ScaleGate module, which sends out the results.

IV. FPGA-BASED STREAM JOIN SYSTEM

This section presents the proposed reconfigurable
architecture for the ScaleJoin algorithm.

Fig. 2. Reconfigurable StreamJoin architecture

Fig. 3. FPGA-based ScaleJoin architecture

A. ScaleJoin Module Architecture

The ScaleJoin module consists of two processing elements
(PEs) that work in parallel, as shown in Fig. 2. Each one of
them correlates N newly arrived tuples of a single input stream
with the all the tuples from the other stream.

The processing phase is broken into stages. Firstly, the
newly arrived tuples for both streams are loaded to the
corresponding processing elements (PEs). Next, the tuples
from the S and the R streams, which are not outdated, are
streamed to the corresponding PE. The PUs compare the two
incoming tuples and if the comparison result is “successful”, a
new merged output tuple is created. The output information is
kept into a FIFO at each PU, which is passed through a
network of MUXes to the PE output. When all tuples are
streamed and no other results have to be sent out, then the
processing phase finishes. In case the newly arrived tuples are
more than the available N PUs at each PE, the above process is
repeated.

B. Reconfigurable ScaleJoin System

The presented reconfigurable architecture can exploit the
high scalability and the performance advantages that hardware
can offer, if it is mapped on a reconfigurable platform with fast
data I/O links and a large number of available hardware
resources. Hence, we mapped the proposed architecture on a
Convey HC-2ex FPGA-based server.

Fig. 3 presents the total system architecture for the stream
join processing. In our prototype platform, each one of the 4
available FPGA devices maps a ScaleJoin module, which has
256 PUs. We parallelized the problem by loading different
newly arrived tuples into each one of the available ScaleJoin
modules. Thus, our implemented system could process in
parallel 1024 newly arrived tuples.

Initially, the newly arrived tuples are stored in shared
memory by parallel threads. Next, the tuples are loaded from
the RAM and they are streamed to the processing elements via
FIFOs. Specifically, the Convey HC-2ex server has 16 parallel
memory controllers, which were used for concurrent and
parallel access to the stored data. The PUs are connected in a
pipelined way, in order to make all the comparisons needed
with the minimum amount of memory reads. Finally, each
ScaleJoin module outputs the results into an output FIFO and
then the results are stored to the global shared memory.

The proposed system can offer solution for even higher
throughput rates of the incoming streams. Specifically, the high
level of parallelism that hardware can offer and the high
bandwidth data I/O links that our proposed platform offers,
leads to the fact that the reconfigurable part can be reloaded
with newly arrived tuples at the same rate-based portion of
time, i.e. second. This reloading process can take place many
times during the same rate-based time portion.

Concluding, this section presented the hardware-based
architecture of the ScaleJoin algorithm. The parallel nature of
the proposed architecture is based on three points: parallel
processing of newly arrived tuples by the four available
FGPAs, the parallel processing of the two independent streams
by the two Processing Elements and the intrinsic parallelism
that the hardware offers.

Fig. 4. Processing rate (comparisons/sec) for SW-based multicore ScaleJoin
and FPGA-based solution ScaleJoin

V. SYSTEM EVALUATION

This section presents the performance results of the final
system.

A. Theoretical Performance bounds

As analyzed in Section II, considering that the tuples from
both streams arrive with a rate T tuples/sec and the time
processing window has size W, then the total number of
comparisons that need to take place at each second is 2 x W x
T2 [1].

B. Experimental setup

We tested and evaluated the proposed system with the same
datasets that were used by previous works, i.e. ScaleJoin [1],
Celljoin [8] and Handshake joins [5, 6]. Specifically, we used a
C code that generated random tuples according to a uniform
distribution in the interval [1−10,000]. The generated tuples
were stored into Convey’s RAM at each second. Next, the new
tuples of R and S streams were loaded to the reconfigurable
part of the ScaleJoin module, while the older tuples were
streamed for processing. Last, the processor read and
presented the stream join results at each second.

C. Performance Evaluation

As referred above, the reconfigurable architecture was
mapped on a Convey HC-2ex server. The HC-2ex server is
equipped with four Virtex 6 LX760 FPGA devices and a 4-core
Intel Xeon CPU at 2.13 GHz with 24GB RAM. The resource

Fig. 5. Throughput (tuples/sec) for SW-based multicore ScaleJoin and
FPGA-based solution ScaleJoin

utilization for the proposed architecture reaches up to 30% of
the available resources (31% Slices, 15% BRAMs). The
processing system is clocked at 80 MHz. On the other hand,
the software-based reference system, as presented in [1], is
equipped with a 2.6 GHz AMD Opteron 6230, 48 cores over 4
sockets and 64 GB RAM. Both systems’ performance was
measured using two metrics, i.e. the numbers of comparisons
per second and the throughput rate that the proposed systems
can achieve. The presented measurements are actual,
experimental results from runs on the respective platforms.

Fig. 4 shows the processing capabilities of the proposed
system. Specifically, we present the number of comparisons
per second, which take place by the implemented systems for
various input datasets. According to the performance results in
[1], software-based reference system achieves approximately
up to 4 billion comparisons/sec for various processing window
sizes. On the other hand, the hardware-based system can offer
up to 74 billion comparisons/sec. Hence, our proposed solution
outperforms in terms of processing the best stream join multi-
core solution by a factor of 19x.

Fig. 5 shows the throughput achieved in tuples per second
for both systems. As the results indicate, the full reconfigurable
system outperforms the fastest software-based multicore
solution by at least a factor of 4x. Concluding, the performance
results in Fig. 4 and 5 reveal the scalability of the hardware
proposed solution.

D. Benchmark Performance Evaluation

This section compares the performance of the proposed
stream join implementation vs. other state-of-the-art multicore
solutions [1, 5, 6 and 8] under the same testing parameters, e.g.
window size.

 As the results in Table I show, the FPGA-based system
seems to outperform any other previously proposed stream join
solution by at least a factor of 2x as far as the processing rate.
In addition, according to Table I, our proposed solution can
outperform any other state-of-the-art multicore solution by at
least one order of magnitude as far as the number of executed
comparisons on streaming data including I/O time. Lastly,
there are some previous works [4, 7] which map the stream join
problem but they do not follow an open source benchmark to
compare with. Thus, we could not compare directly the above
works with ours either due to the different nature of the

TABLE I. SW MULTICORE STREAM JOIN VS. FPGA BASED STREAM JOIN ON BENCHMARK EVALUATION

Systems
Handshake system

[5, 6]
ScaleJoin system

[1]
CellJoin system

[8]
FPGA-based ScaleJoin

system

CPU Cores 40 48 9 1 CPU + 4 FPGAs

CPU type 2.2 GHz AMD Opteron 2.6 GHz AMD Opteron 1 PPE and 8 SPEs 2.13 GHz Intel Xeon

Max Throughput Rate
(tuples/sec)

5125 3000 2000 12800

Max Processing Rate
(Comps/sec)

1.5 x 109 4 x 109 - 74 x 109

performance results that they presented or due to the
unavailability of the datasets that they used.

VI. RELATED WORK

This section presents previously software and hardware-
based works that exist in literature for the stream join problem.

A. Software based implementations

The first software-based implementation on stream join
problem was the Handshake algorithm [5, 6]. This algorithm
can trivially be scaled up to handle large join windows, high
throughput rates, and compute-intensive join predicates.
Regarding processing throughput and latency, both of these
implementations have significantly less processing throughput
than our proposed solution, as shown above.

B. Hardware based implementations

There are many previous hardware-based works on stream
join problem. To begin with, Halstead et. al. [3] introduces an
FPGA-based implementation that uses a hash-join engine,
achieving impressive performance results. Qian et al. presented
M3Join in [4], which is a hardware solution that achieves high
processing throughput rates. Authors in [5, 6] presented the
reconfigurable implementations of the Handshake join
algorithm using an adaptive merging network. In addition, Oge
et al. [7] proposes a scalable and order-agnostic hardware
design of sliding-window aggregation and its implementation
on an FPGA. Last, Celljoin [8] is another implementation of
window-based stream joins using a Cell processor. However,
regarding its processing throughput both software
implementations of Handshake join and ScaleJoin outperform
this implementation.

VII. CONCLUSIONS

This work presented an FPGA-based system that
implements a widely used stream data mining operator, i.e.
stream join. To the best of our knowledge, this is the first work
that maps a stream join operator on a high-end multi-FPGA
system. We presented and analyzed an efficient, extensible,
scalable and generic reconfigurable architecture for the stream
join workload. The main characteristics of the proposed
architecture are analyzed below: i) efficient as according to the

performance evaluation the proposed architecture seems to
outperform any other state-of-the-art published work, ii)
extensible and scalable as the proposed architecture can be
easily extended and offer high performance achievements and
iii) generic as it can be easily expanded to tackle other stream-
based workloads on reconfigurable hardware. Concluding, this
work showed that FPGAs are particularly well suited for this
form of computation vs. software-based multicore solutions,
but fast I/O and the proper memory organization is necessary in
order to fully realize these advantages.

ACKNOWLEDGMENT

This work was supported in part by the European
Commission in the context of the H2020-FETHPC EXTRA
project (No. 671653).

REFERENCES
[1] Gulisano, V., Nikolakopoulos, Y., Papatriantafilou, M., & Tsigas, P.

ScaleJoin: a Deterministic, Disjoint-‐Parallel and Skew-‐Resilient
Stream Join. In Big Data (Big Data), 2015 IEEE International
Conference. IEEE.

[2] Kang, J., Naughton, J. F., & Viglas, S. D. (2003, March). Evaluating
window joins over unbounded streams. In Data Engineering, 2003.
Proceedings. 19th International Conference on (pp. 341-352). IEEE.

[3] Halstead, R. J., Sukhwani, B., Min, H., Thoennes, M., Dube, P., Asaad,
S., & Iyer, B. (2013, April). Accelerating join operation for relational
databases with FPGAs. In Field-Programmable Custom Computing
Machines (FCCM), 2013 IEEE 21st Annual International Symposium on
(pp. 17-20). IEEE.

[4] Qian, J. B., Xu, H. B., DONG, Y. S., Liu, X. J., & Wang, Y. L. (2005).
FPGA acceleration window joins over multiple data streams. Journal of
Circuits, Systems, and Computers, 14(04), 813-830.

[5] Teubner, J., & Mueller, R. (2011, June). How soccer players would do
stream joins. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data (pp. 625-636). ACM.

[6] Roy, P., Teubner, J., & Gemulla, R. (2014). Low-latency handshake
join.Proceedings of the VLDB Endowment, 7(9), 709-720.

[7] Oge, Y., Yoshimi, M., Miyoshi, T., Kawashima, H., Irie, H., &
Yoshinaga, T. (2013, December). An Efficient and Scalable
Implementation of Sliding-Window Aggregate Operator on FPGA.
In Computing and Networking (CANDAR), 2013 First International
Symposium on (pp. 112-121). IEEE.

[8] Gedik, B., Bordawekar, R. R., & Philip, S. Y. (2009). CellJoin: a
parallel stream join operator for the cell processor. The VLDB
journal, 18(2), 501-519.

