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Abstract—Stream join is a fundamental operation that 
combines information from different high-speed and high-volume 
data streams. This paper presents an FPGA-based architecture 
that maps the most performance-efficient stream join algorithm, 
i.e. ScaleJoin, to reconfigurable logic. The system was fully 
implemented on a Convey HC-2ex hybrid computer and the 
experimental performance evaluation shows that the proposed 
system outperforms by up to one order of magnitude the 
corresponding fully optimized parallel software-based solution 
running on a high-end 48-core multiprocessor platform. The 
proposed architecture can be used as a generic template for 
mapping stream processing algorithms to reconfigurable logic, 
taking into consideration real-world challenges. 
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I.  INTRODUCTION 

The data mining research area focuses on the extraction of 
previously unknown and potentially useful information from 
raw data. Modern data mining applications require real-time 
processing of high-volume and high-speed data streams to 
enhance the value of existing information resources. A 
fundamental operator for the data stream mining is the stream 
join operator. Stream join is used for correlating the 
information from different streams. As the stream join operator 
is computationally expensive, there are many works that focus 
on accelerating their processing workload using distributed or 
parallel frameworks. The ScaleJoin algorithm [1] is a new, 
parallel formulation of the stream join operator that uses a 
shared-memory framework. The algorithm offers really high 
performance results, outperforming any other state-of-the-art 
stream join implementation.  

This work presents the first implementation of the most 
performance efficient stream join operator, i.e. ScaleJoin, on a 
reconfigurable platform with impressive performance results 
when compared to highly optimized codes running on 
multiprocessors. The contributions of this work are: i) this is 
the first hardware-based work, to the best of our knowledge, 
which proposes a reconfigurable architecture for the ScaleJoin 
stream join algorithm, ii) the proposed hardware-based 
architecture is scalable and generic as it can be used as 
template for many other problems that correlate streaming data, 
iii) the proposed architecture is extensible, as it takes advantage 
of the parallelism that reconfigurable hardware can offer and 
iv) the implemented system achieves at least 4x better 

throughput data rates vs. the fastest stream join multi-threaded 
solution and at least one order of magnitude higher processing 
rates than any other multi-core published solution. 

The rest of the paper is organized as follows. Section II and 
III make an introduction on the stream join problem and the 
ScaleJoin algorithm. Section IV presents the proposed 
hardware-based architecture of the ScaleJoin algorithm. 
Section V evaluates the performance of the proposed 
architecture and compares its performance results with the 
performance of previously presented works. Section VI 
presents the related software- and hardware-based works on 
stream join operation, and Section VII draws the conclusions of 
this work. 

II. STREAMS AND STREAM JOIN 

The streams consist of flowing tuples, which are modeled 
as two components <v, t>, where v is a value (or a set of values 
depending on the application) and t is the timestamp, which 
defines the order in the stream sequence. The theoretical 
infinite size of the streams and the need for real-time 
processing leads to the limitation of processing on a subset of 
the incoming tuples, i.e. processing over sliding time-based 
windows. 

The stream join operation takes place on streaming in-order 
timestamped tuples. During the join process between 2 streams, 
i.e. R and S, all the tuples from the R stream are “correlated”-
compared with all the tuples from the S stream inside the given 
time-based window. Whenever the “correlation” between two 
tuples is “successful”, a new output tuple is created, combining 
the attributes of both input tuples. The stream join algorithm 
follows the three-step procedure, which is proposed by Kang et 
al. [2]. Let WS and WR be the time windows, which contain the 
tuples from S and R streams, respectively, and a given time 
window size W, the three-step procedure is: i) compare tR with 
all tS ∈ WS, ii) add tR to WR and iii) remove all ti ∈ WR : ti.ts < 
tR.ts − W. 

The stream join operator has high computational cost. 
Given that the tuple rate is T tuples per second for both 
processing streams and the processing window size is W 
seconds, the system maintains W x T tuples, in total. Hence, T 
tuples have to be compared with W x T tuples every second. 
Thus, the total computations for the tuples of each stream are 
about W x T2 and the aggregate computational cost for both 
streams is 2 x W x T2. 



 

 

Fig. 1. Software-based Scalejoin algorithm implementation [1]. 

III.  SCALEJOIN ALGORITHM 

The ScaleJoin algorithm innovation is based on the abstract 
data type, namely ScaleGate. The ScaleGate can process in 
parallel various numbers of streams in a lock-free way. Also, it 
distributes the incoming tuples to the parallel threads without 
the need of central coordination. Last, it is, also, used for 
collecting the correlated output tuples from the parallel threads 
to the final output.  

The main processing unit for the ScaleJoin algorithm 
software-based implementation is the Processing Unit (PU). As 
referred above, the ScaleJoin algorithm distributes the 
processing workload to n parallel PUs, which means that 
approximately 1/n of the overall comparisons is executed by 
each PU. 

As shown in Fig. 1, the software implementation has 3 
main modules. Firstly, the input ScaleGate module, i.e. SGin, 
receives the timestamp-sorted input tuples from a varying 
number of physical input streams and merges them into a 
single-timestamp sorted stream of tuples. Next, the sorted 
tuples are passed to the parallel processing units, where the 
main processing takes place. Lastly, the output tuples are sent 
to the SGout ScaleGate module, which sends out the results. 

IV.  FPGA-BASED STREAM JOIN SYSTEM 

This section presents the proposed reconfigurable 
architecture for the ScaleJoin algorithm.  

 

 

Fig. 2. Reconfigurable StreamJoin architecture 

 

Fig. 3. FPGA-based ScaleJoin architecture 

A. ScaleJoin Module Architecture 

The ScaleJoin module consists of two processing elements 
(PEs) that work in parallel, as shown in Fig. 2. Each one of 
them correlates N newly arrived tuples of a single input stream 
with the all the tuples from the other stream.  

The processing phase is broken into stages. Firstly, the 
newly arrived tuples for both streams are loaded to the 
corresponding processing elements (PEs). Next, the tuples 
from the S and the R streams, which are not outdated, are 
streamed to the corresponding PE. The PUs compare the two 
incoming tuples and if the comparison result is “successful”, a 
new merged output tuple is created. The output information is 
kept into a FIFO at each PU, which is passed through a 
network of MUXes to the PE output. When all tuples are 
streamed and no other results have to be sent out, then the 
processing phase finishes. In case the newly arrived tuples are 
more than the available N PUs at each PE, the above process is 
repeated. 

B. Reconfigurable ScaleJoin System 

The presented reconfigurable architecture can exploit the 
high scalability and the performance advantages that hardware 
can offer, if it is mapped on a reconfigurable platform with fast 
data I/O links and a large number of available hardware 
resources. Hence, we mapped the proposed architecture on a 
Convey HC-2ex FPGA-based server. 

Fig. 3 presents the total system architecture for the stream 
join processing. In our prototype platform, each one of the 4 
available FPGA devices maps a ScaleJoin module, which has 
256 PUs. We parallelized the problem by loading different 
newly arrived tuples into each one of the available ScaleJoin 
modules. Thus, our implemented system could process in 
parallel 1024 newly arrived tuples. 

Initially, the newly arrived tuples are stored in shared 
memory by parallel threads.  Next, the tuples are loaded from 
the RAM and they are streamed to the processing elements via 
FIFOs. Specifically, the Convey HC-2ex server has 16 parallel 
memory controllers, which were used for concurrent and 
parallel access to the stored data. The PUs are connected in a 
pipelined way, in order to make all the comparisons needed 
with the minimum amount of memory reads. Finally, each 
ScaleJoin module outputs the results into an output FIFO and 
then the results are stored to the global shared memory. 



The proposed system can offer solution for even higher 
throughput rates of the incoming streams. Specifically, the high 
level of parallelism that hardware can offer and the high 
bandwidth data I/O links that our proposed platform offers, 
leads to the fact that the reconfigurable part can be reloaded 
with newly arrived tuples at the same rate-based portion of 
time, i.e. second. This reloading process can take place many 
times during the same rate-based time portion. 

Concluding, this section presented the hardware-based 
architecture of the ScaleJoin algorithm. The parallel nature of 
the proposed architecture is based on three points: parallel 
processing of newly arrived tuples by the four available 
FGPAs, the parallel processing of the two independent streams 
by the two Processing Elements and the intrinsic parallelism 
that the hardware offers. 

 

Fig. 4. Processing rate (comparisons/sec) for SW-based multicore ScaleJoin 
and FPGA-based solution ScaleJoin 

V. SYSTEM EVALUATION  

This section presents the performance results of the final 
system.  

A. Theoretical Performance bounds 

As analyzed in Section II, considering that the tuples from 
both streams arrive with a rate T tuples/sec and the time 
processing window has size W, then the total number of 
comparisons that need to take place at each second is 2 x W x 
T2 [1]. 

B. Experimental setup 

We tested and evaluated the proposed system with the same 
datasets that were used by previous works, i.e. ScaleJoin [1], 
Celljoin [8] and Handshake joins [5, 6]. Specifically, we used a 
C code that generated random tuples according to a uniform 
distribution in the interval [1−10,000]. The generated tuples 
were stored into Convey’s RAM at each second. Next, the new 
tuples of R and S streams were loaded to the reconfigurable 
part of the ScaleJoin module, while the older tuples were 
streamed for processing.  Last, the processor read and 
presented the stream join results at each second. 

C. Performance Evaluation 

As referred above, the reconfigurable architecture was 
mapped on a Convey HC-2ex server. The HC-2ex server is 
equipped with four Virtex 6 LX760 FPGA devices and a 4-core 
Intel Xeon CPU at 2.13 GHz with 24GB RAM. The resource  

 

Fig. 5. Throughput (tuples/sec) for SW-based multicore ScaleJoin and 
FPGA-based solution ScaleJoin 

utilization for the proposed architecture reaches up to 30% of 
the available resources (31% Slices, 15% BRAMs). The 
processing system is clocked at 80 MHz. On the other hand, 
the software-based reference system, as presented in [1], is 
equipped with a 2.6 GHz AMD Opteron 6230, 48 cores over 4 
sockets and 64 GB RAM. Both systems’ performance was 
measured using two metrics, i.e. the numbers of comparisons 
per second and the throughput rate that the proposed systems 
can achieve. The presented measurements are actual, 
experimental results from runs on the respective platforms. 

Fig. 4 shows the processing capabilities of the proposed 
system. Specifically, we present the number of comparisons 
per second, which take place by the implemented systems for 
various input datasets. According to the performance results in 
[1], software-based reference system achieves approximately 
up to 4 billion comparisons/sec for various processing window 
sizes. On the other hand, the hardware-based system can offer 
up to 74 billion comparisons/sec. Hence, our proposed solution 
outperforms in terms of processing the best stream join multi-
core solution by a factor of 19x. 

Fig. 5 shows the throughput achieved in tuples per second 
for both systems. As the results indicate, the full reconfigurable 
system outperforms the fastest software-based multicore 
solution by at least a factor of 4x. Concluding, the performance 
results in Fig. 4 and 5 reveal the scalability of the hardware 
proposed solution.  

D. Benchmark Performance Evaluation 

This section compares the performance of the proposed 
stream join implementation vs. other state-of-the-art multicore 
solutions [1, 5, 6 and 8] under the same testing parameters, e.g. 
window size. 

 As the results in Table I show, the FPGA-based system 
seems to outperform any other previously proposed stream join 
solution by at least a factor of 2x as far as the processing rate. 
In addition, according to Table I, our proposed solution can 
outperform any other state-of-the-art multicore solution by at 
least one order of magnitude as far as the number of executed 
comparisons on streaming data including I/O time. Lastly, 
there are some previous works [4, 7] which map the stream join 
problem but they do not follow an open source benchmark to 
compare with. Thus, we could not compare directly the above 
works with ours either due to the different nature of the



TABLE I.  SW MULTICORE STREAM JOIN VS. FPGA BASED STREAM JOIN ON BENCHMARK EVALUATION  

Systems 
Handshake system  

[5, 6] 
ScaleJoin system  

[1] 
CellJoin system  

[8] 
FPGA-based ScaleJoin 

system 

CPU Cores 40 48 9 1 CPU + 4 FPGAs 

CPU type 2.2 GHz AMD Opteron 2.6 GHz AMD Opteron 1 PPE and 8 SPEs 2.13 GHz Intel Xeon 

Max Throughput Rate 
(tuples/sec) 

5125 3000 2000 12800 

Max Processing Rate 
(Comps/sec) 

1.5 x 109 4 x 109 - 74 x 109 

performance results that they presented or due to the 
unavailability of the datasets that they used. 

VI.  RELATED WORK 

This section presents previously software and hardware-
based works that exist in literature for the stream join problem. 

A. Software based implementations 

The first software-based implementation on stream join 
problem was the Handshake algorithm [5, 6]. This algorithm 
can trivially be scaled up to handle large join windows, high 
throughput rates, and compute-intensive join predicates. 
Regarding processing throughput and latency, both of these 
implementations have significantly less processing throughput 
than our proposed solution, as shown above. 

B. Hardware based implementations 

There are many previous hardware-based works on stream 
join problem. To begin with, Halstead et. al. [3] introduces an 
FPGA-based implementation that uses a hash-join engine, 
achieving impressive performance results. Qian et al. presented 
M3Join in [4], which is a hardware solution that achieves high 
processing throughput rates. Authors in [5, 6] presented the 
reconfigurable implementations of the Handshake join 
algorithm using an adaptive merging network. In addition, Oge 
et al. [7] proposes a scalable and order-agnostic hardware 
design of sliding-window aggregation and its implementation 
on an FPGA. Last, Celljoin [8] is another implementation of 
window-based stream joins using a Cell processor. However, 
regarding its processing throughput both software 
implementations of Handshake join and ScaleJoin outperform 
this implementation. 

VII.  CONCLUSIONS 

This work presented an FPGA-based system that 
implements a widely used stream data mining operator, i.e. 
stream join. To the best of our knowledge, this is the first work 
that maps a stream join operator on a high-end multi-FPGA 
system. We presented and analyzed an efficient, extensible, 
scalable and generic reconfigurable architecture for the stream 
join workload. The main characteristics of the proposed 
architecture are analyzed below: i) efficient as according to the 

performance evaluation the proposed architecture seems to 
outperform any other state-of-the-art published work, ii) 
extensible and scalable as the proposed architecture can be 
easily extended and offer high performance achievements and 
iii) generic as it can be easily expanded to tackle other stream-
based workloads on reconfigurable hardware. Concluding, this 
work showed that FPGAs are particularly well suited for this 
form of computation vs. software-based multicore solutions, 
but fast I/O and the proper memory organization is necessary in 
order to fully realize these advantages. 
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