
Research Article
How to Efficiently Reconfigure Tunable Lookup Tables for
Dynamic Circuit Specialization

Amit Kulkarni and Dirk Stroobandt

ELIS Department, Computer Systems Lab, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium

Correspondence should be addressed to Amit Kulkarni; amit.kulkarni@ugent.be

Received 27 October 2015; Accepted 2 March 2016

Academic Editor: Fernando Pardo

Copyright © 2016 A. Kulkarni and D. Stroobandt. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Dynamic Circuit Specialization is used to optimize the implementation of a parameterized application on an FPGA. Instead
of implementing the parameters as regular inputs, in the DCS approach these inputs are implemented as constants. When the
parameter values change, the design is reoptimized for the new constant values by reconfiguring the FPGA. This allows faster
and more resource-efficient implementation but investigations have shown that reconfiguration time is the major limitation for
DCS implementation on Xilinx FPGAs. The limitation arises from the use of inefficient reconfiguration methods in conventional
DCS implementation. To address this issue, we propose different approaches to reduce the reconfiguration time drastically and
improve the reconfiguration speed. In this context, this paper presents the use of custom reconfiguration controllers and custom
reconfiguration software drivers, along with placement constraints to shorten the reconfiguration time. Our results show an
improvement in the reconfiguration speed by at least a factor 14 by using Xilinx reconfiguration controller along with placement
constraints. However, the improvement can go up to a factor 40 with the combination of a custom reconfiguration controller,
custom software drivers, and placement constraints. We also observe depreciation in the system’s performance by at least 6% due
to placement constraints.

1. Introduction

An ability to modify some parts of the logic blocks of an
FPGA while the rest remains active is called partial run-time
reconfiguration andhas been commercially available for quite
a while through the Xilinx partial reconfiguration (PR) flow
[1]. Members of our research group developed a technique
called Dynamic Circuit Specialization (DCS) which is a
partial reconfiguration technique tailored to parameterized
applications [2]. A parameterized application contains a set of
inputs for which some of the input values change much less
frequently than the other inputs. The infrequently changing
inputs are called parameters. DCS uses the run-time recon-
figuration technique to specialize the parameterized design
depending on the values of the infrequently changing inputs
(parameters). Hence for every change in the parameter value,
a new specialized bitstream is generated and the FPGA is
reconfigured with the specialized bitstreams. Because the

actual reconfiguration bitstream is computed at run-time
instead of at compile-time, DCS allows wider applicability
of PR for implementation with a lot of different possible
implementation variants.

Our experiments for conventional DCS implementation
on a self-reconfigurable platform [3] have shown the Hard-
ware Internal Configuration Access Port (HWICAP) to be
a main bottleneck for the reconfiguration speed, since its
throughput is not high enough to match with the speed of
the embedded processor used during the reconfiguration
process. However, experiments described in [4] have shown
that the bottleneck depends on the experiment setup and the
different components that participate during the reconfigu-
ration process.

In the conventional implementation of a DCS system,
the Xilinx HWICAP is used as a reconfiguration controller.
The HWICAP driver function “XhwIcap setClb bits” is used
to reconfigure the truth table entries of a single Lookup

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2016, Article ID 5340318, 12 pages
http://dx.doi.org/10.1155/2016/5340318

2 International Journal of Reconfigurable Computing

Parameterized
HDL design

Specialized
configuration

Parameter
values

Synthesis
Technology

mapping
(TLUTMAP)

Placement Routing

Evaluate
Boolean
function

Partial
Parameterized
Configuration

(PPC)

Template
Configuration

(TC)

Generic
stage

Specialization
stage

Figure 1: Dynamic Circuit Specialization tool flow (TLUT tool flow).

Table (LUT). With existing Xilinx FPGA column based
architectures, we propose to reconfigure multiple LUTs at
the same time [5]. We do this by using design placement
constraints to cluster the bits that have to be changed
in the same reconfiguration columns and customizing the
HWICAP’s “XhwIcap setClb bits” function. This gives us a
significant improvement in reconfiguration speed. However,
this improvement comes at the cost of a slight reduction in the
performance of the design. In this paper we show the trade-
off between the design performance and the reconfiguration
speed achieved by employing placement constraints and a
custom HWICAP driver.

We proposed two custom reconfiguration controllers:
MiCAP [6] and MiCAP-Pro that are specifically designed
to provide efficient reconfiguration for the DCS system.
The controllers have higher throughput than the standard
HWICAP. We used the custom reconfiguration drivers along
with the placement constraints on the Zynq-SoC FPGAs for
implementing 8-bit FIR filters using DCS.

Our main contribution in this paper is that we extend
the principle of reconfiguring multiple LUTs to the software
drivers of the custom reconfiguration controllers: MiCAP
and MiCAP-Pro, thus resulting in a drastic improvement in
DCS reconfiguration speed. We also propose a concept to
store the frames in a memory (that acts as a reconfiguration
cache) after reconfiguration so thatwe bypass the read frames’
activity for every future reconfiguration of the same LUTs.
The extended principle also contains considering an existing
approach to use placement constraints to cluster possible
truth table entries of the LUTs in a minimal number of CLB
columns.

In Section 2, we briefly introduce DCS and its imple-
mentation on the Xilinx FPGAs. In Section 3, we describe a
brief overview of the column based Xilinx FPGA architecture
of the Zynq-SoC. The reconfiguration controllers used for
implementing DCS are presented in Section 4, followed by
the description of custom reconfiguration software drivers
in Section 5. A brief overview of placement constraints
and how to improve reconfiguration speed using placement
constraints is presented in Section 6. In Section 7, we
explain our experimental setup and the parameterized design
implemented using DCS. In Section 8 we discuss the results
of our experiments and interpret our results and finally we
conclude in Section 9.

2. Dynamic Circuit Specialization

Dynamic Circuit Specialization (DCS) enables us to imple-
ment a parameterized application with less FPGA resources
(mainly Lookup Tables) compared to the classic static FPGA
implementation. An average reduction of 42% in FPGA
resources is observed for an 8-bit, 16-tap adaptive Finite
Impulse Response (FIR) filter application. This also helps in
shortening the critical path of the design and thus it improves
the filter’s performance [2].

The tool flow that implements DCS consists of two stages:
a generic stage and a specialization stage. In the generic
stage, a parameterized application (or design) described in
a Hardware Description Language (HDL) is processed to
yield a Partial Parameterized Configuration (PPC) and a
Template Configuration (TC) as depicted in Figure 1. The
PPC contains bitstreams expressed as Boolean functions

International Journal of Reconfigurable Computing 3

of input parameters of a parameterized design. The TC
contains static bits (ones and zeros) and is used for the non-
reconfigurable parts of the problem.Members of our research
group have found an automatic method to map a parameter-
ized design onto virtual Lookup Tables (LUTs) called Tunable
Lookup Tables (TLUTs) [2]. TLUTs are the intermediate
representation of physical LUTs with truth table entries (a
part of the bitstreams) that are expressed as Boolean functions
of the parameters instead of regular bitstreams. (A TLUT is a
virtual version of a physical LUT whose features are identical
to the physical LUT of an FPGA, except that the truth table
entries are dependent on the parameters.) Therefore, during
the reconfiguration, only the truth table entries of the TLUTs
are replaced with the specialized bits that are generated
during the specialization stage.

In the specialization stage, the Boolean functions are
evaluated for specific values of the parameters thus gener-
ating specialized bitstreams. For every infrequent change in
parameter values, the Boolean functions are evaluated by a
specialized configuration generator (SCG). The SCG can be
implemented on an embedded processor such as the Power-
PC or the ARM Cortex-A9 present within the FPGA core.

The SCG reconfigures the FPGA via a configuration
interface called the Internal Configuration Access Port
(ICAP) by swapping the specialized bitstreams into the
FPGA configuration memory. The configuration controller
such as HWICAP (in conventional DCS implementation,
the HWICAP is used as a reconfiguration controller) encap-
sulates the ICAP primitive (port) of the FPGA and forms
a controller that orchestrates the swapping of specialized
bitstreams via the interface port ICAP. The bitstreams are
accessed in the form of frames and a frame is defined as
the smallest addressable element of FPGA configuration data.
Each frame contains reconfiguration bits of tens of LUTs and
has its unique frame address that can be used to point to the
frame during the reconfiguration.The software to implement
DCS is available as an open source project on GitHub [7].

2.1. DCS on the Xilinx FPGAs. The conventional implemen-
tation of DCS on the Xilinx FPGAs, such as the Zynq-
SoC, is shown in Figure 2. The SCG is realized on an
embedded processor (ARM Cortex-A9 dual core processor
or a MicroBlaze soft core processor).

The PPC Boolean functions are stored in the memory
such as DRAMmemory of the Zynq-SoC.

The ICAP is used as a configuration interface. The
HWICAP reconfiguration controller is responsible for
orchestrating the replacement of the stale frames with
specialized frames present in the configuration memory of
the FPGA.

2.2. The HWICAP Driver “XhwIcap setClb bits” Function.
The HWICAP supports a software driver function called
“XhwIcap setClb bits” to perform the reconfiguration. This
function accepts two crucial function arguments:

(1) Location coordinates of a TLUT: this information is
used to generate the frame address that is used to
point to the frame that contains truth table entries of
the TLUT.

PPC
memory

Parameter
values

Specialized
configuration

generator
(SCG)

CLB

Configuration
interface

Figure 2: Dynamic Circuit Specialization on Xilinx FPGAs.

(2) Truth table entries: these are the specialized bits
generated after the specialization stage of the DCS
tool flow. The TLUT truth table entries need to be
overwritten with these specialized bits.

The reconfiguration takes place in 3 steps:

(1) Read frames: using the frame address, a set of four
consecutive frames containing the truth table entries
of a TLUT are read from the configuration memory.

(2) Modify frames: the current truth table entries of a
TLUT are replaced by the specialized bits. The modi-
fied frames contain specialized bitstreams.

(3) Write-back frames: using the same frame address,
the modified four frames are written back to the
configurationmemory, thus accomplishing themicro-
reconfiguration.

Micro-reconfiguration is a fine grain form of reconfiguration
used for DCS [8].

Therefore, a reconfiguration controller in this case should
be capable of reading, modifying, and writing the frames
from the configuration memory and a processor should take
care of executing the cycle of read, modify, and write-back
frames.

The micro-reconfiguration incurs 4 major costs. These
costs are major drawbacks of DCS:

(1) PPCMemory Size. Memory space required to store all
the Boolean functions of the parameterized applica-
tion.

4 International Journal of Reconfigurable Computing

(2) Evaluation Time. Time taken by the SCG to evaluate
the Boolean function for a specific set of parameter
values.

(3) Reconfiguration Time. Time taken to update all the
TLUTs of a parameterized design with the specialized
bits; in other words, time taken to accomplish the
micro-reconfiguration.

(4) Power Consumption. The idle and dynamic power
consumed by the reconfiguration infrastructure dur-
ing the micro-reconfiguration.

The reconfiguration time is a major overhead of the DCS
approach [8]. Using theHWICAP, the time taken to reconfig-
ure one TLUT is 230 𝜇s. Custom reconfiguration controllers
such as the MiCAP and the MiCAP-Pro offer much higher
reconfiguration speeds compared to the HWICAP at the
extra cost of FPGA resources.

3. Column Based Xilinx FPGA Architecture

In order to exploit reconfiguration in modern FPGA archi-
tectures, we have to adjust to the specific reconfiguration
infrastructure in current column based FPGA architectures
from Xilinx for our experiments. Since the custom recon-
figurations controllers are designed to be specific to the
Zynq-SoC architecture, we conduct our experiments on
the Zynq-SoC FPGA only. However, the idea of improving
the reconfiguration speed using custom drivers along with
placement constraints can be applied to any column based
Xilinx FPGA.

The Xilinx FPGA on the Zynq-SoC contains an array of
Configurable Logic Blocks (CLBs) which encapsulate LUTs,
flip-flops, andmultiplexers. Each CLB contains 8 LUTs and is
capable of realizing combinational and sequential logic. The
array of CLBs is divided into a number of clock regions. Each
clock region contains CLB columns with a fixed number of
CLBs and the height of the CLB column remains the same
in all the clock regions. There are multiple CLB columns
adjacent to each other thus forming CLB rows as shown in
Figure 3. There are other columns such as DSP and BRAM
columns that exist in between CLB columns.

3.1. Frame Structure. A frame of an FPGA is the smallest
addressable element of an FPGA configuration. It can be
viewed as a vertical stack of a fixed number of bits spanning
a complete height of a row [9]. A fixed data size of 2 words
(1 word = 32 bits) is assigned to each CLB within the entire
frame.Thismeans a set of LUT entries present in oneCLB can
be configured within those 2 words. However, the complete
configuration data of an entire CLB containingmultiple LUTs
spans over four frames and each frame has its own unique
frame address [9]. It should be noted that there exists one
extra word called “HCLK config word” for each column
within one frame as shown in Figure 4.

A single frame can contain truth table entries of multiple
LUTs which are located in a single CLB column. In the
Zynq-7000 family, there are 50 CLBs in one column, so a
total of 50 × 2 + 1 = 101 words exist in one frame. The
frame size plays an important role during the reconfiguration

X1Y0

Clock regionClock region

Clock regionClock region

Clock regionClock region

X1Y1

X1Y2X0Y2

X0Y1

X0Y0

D
SP

 co
lu

m
n

BR
A

M
 co

lu
m

n

CL
B

co
lu

m
n

du
al

 co
re

 p
ro

ce
ss

or
A

RM
 C

or
te

x-
A

9

Figure 3: Column based FPGA architecture: Zynq-SoC.

process. Since a frame is the smallest addressable element, for
every reconfiguration process, at least one frame has to be
accessed via theHWICAP.Thus the time taken to reconfigure
a LUT is affected by the frame size. For a fixed HWICAP
throughput, an increase in frame size results in an increase
in reconfiguration time and thus reduces the reconfiguration
speed.

4. Reconfiguration Controllers

The configuration data of an FPGA can be internally accessed
frame by frame by an embedded processor such as the
ARM Cortex-A9 (dual core) present in the Zynq-SoC. The
processor can access the frames via an internal configuration
interface called ICAP. The ICAP is a hardware macro or
a primitive that needs a hardware driver (controller) to
write or read the configuration data from the configuration
memory. The maximum data throughput the ICAP supports
is 400MBps [10].

The processor has to send a series of commands to the
ICAP in order to access the bitstreams from the configuration
memory. There are different sets of commands to read
and write the frames into the configuration memory. The

International Journal of Reconfigurable Computing 5

31

31

31

31

31

31

31

31

31

31

31

31

31

0

0

0

0

0

0

0

0

0

0

0

0

0

Word 1

Word 2

Word 3

Word 4

Word 49

Word 50

Word 51

Word 52

Word 53

Word 98

Word 99

Word 100

Word 101

...

...
...

...

CLB 1

CLB 2

CLB 24

CLB 25

CLB 49

CLB 50

HCLK
config
word

Frame structure of Zynq-SoC (Artix-7)

Figure 4: Frame structure of a column based Xilinx Zynq-SoC.

reconfiguration controller receives these commands from the
processor, channelizes them to the ICAP, and orchestrates
the bitstream transactions between the processor and the
configuration memory.

4.1. Hardware ICAP (HWICAP). The HWICAP is an IP
provided by Xilinx. The controller is mainly intended for
the partial reconfiguration and therefore contains a complex
state machine with a tiny FIFO buffer. The buffer is used
to temporarily store the frames before they are sent to or
received from the configuration memory. The HWICAP
can support a maximum clock frequency of 100MHz. The
maximum data throughput of the HWICAP is 19MBps [10].
The “XhwIcap setClb bits” is a HWICAP software driver
that is responsible for reconfiguring a LUT given its location
coordinates and the truth table entries. Therefore, this driver
is used for the implementation of DCS.

4.2. MiCAP. The Micro-Reconfigurable Configuration
Access Port (MiCAP) is a custom reconfiguration controller
used to micro-reconfigure the frames of a parameterized
design [6]. The controller has a simple state machine and an
individual input and output buffer. The depth of the buffers
is sufficient to hold all the required data including ICAP

HP0 MGP0

DMA
controller ICAP

GPIO
PL

PS

MiCAP-Pro

Figure 5: MiCAP-Pro architecture on the Zynq-SoC.

commands and the bitstreams. We have shown that MiCAP
improves the reconfiguration speed by 17% and consumes
50% less resources than the HWICAP. However, the MiCAP
suffers from a major bottleneck while transferring the data
between PL and PS regions of the Zynq-SoC.

TheMiCAP software driver function “MiCAP setClbbits”
uses the same principle (read-modify-write-back frames) of
the “XhwIcap setClb bits” function. The function reconfig-
ures only a single TLUT for every function call.

4.3. MiCAP-Pro. The pro. version of the MiCAP overcomes
the data transfer bottleneck between the Processor System
(PS) region and the Programmable Logic (PL) region of
the Zynq-SoC. The data transfer between the ICAP and the
processor occurs via High Performance (HP) ports of the
SoC. It uses a DMA controller for a high speed data trans-
action.The reconfiguration speed is improved by a factor ≈3.
However, the improvement of reconfiguration speed comes
at the cost of the FPGA resource that is ≈3 times higher than
the HWICAP.The block diagram of theMiCAP-Pro is shown
in Figure 5.

TheMiCAP-Pro uses the same driver “MiCAP setClbbits”
that includes minor changes to use DMA related functions to
transfer the data via HP ports of the Zynq-SoC.

TheMiCAP-Pro is a more advanced controller than other
reconfiguration controllers such as the ZyCAP [10] and the
FaRM [11]. The ZyCAP does not support configuration read-
back and the FaRM supports configuration read-back but
the controller can be implemented only on the PLB bus. The
MiCAP-Pro is capable of reading and writing the configura-
tion frames compatible with the AXI bus.

5. Custom Reconfiguration Drivers

In this section, we propose two different principles to modify
the reconfiguration drivers of the corresponding reconfig-
uration controllers. These modifications optimize the read
activity during themicro-reconfiguration.

5.1. Type 1: Mutliread, Multimodify, and Multiwrite. The con-
ventional drivers follow the read-modify-write-back princi-
ple to reconfigure every TLUT separately. In order to exploit
the advantage of the existing frame structure that is imposed
by the columnbasedXilinx FPGAarchitecture, we propose to
modify truth table entries of multiple TLUTs within a single
read activity. If multiple TLUTs of a parameterized design are

6 International Journal of Reconfigurable Computing

placed in a single column then each of these TLUTs has a
certain set of truth table entries that are located in the same
frame. However, all 64 entries of a single TLUT are spread
over 4 different frames.We havemodified the reconfiguration
process (into driver type 1) that takes place in 3 steps:

(1) Read multiple frames: with the help of the frame
address, four frames containing all the truth table
entries of a column of TLUTs and LUTs are read
from the configuration memory. If there are multiple
TLUTs placed in a single column, the truth table
values of multiple TLUTs are read with a single read
activity.

(2) Modify frames: before modification, the function
locates the truth table bits of all the TLUTs that are
present in the frame. The current truth table entries
of these TLUTs are replaced with the specialized truth
table bits, which are generated by the SCG. Thus
multiple TLUTs are specialized in a single attempt.

(3) Write-back frames: with the help of the same frame
address, themodified or specialized truth table values
are updated in all the TLUTs of the column by
swapping in multiple frames into the configuration
memory of the FPGA.This updates all the truth table
entries of multiple TLUTs that are placed in a single
column.

Hence for a single read frames activity, multiple TLUTs
can be reconfigured and this proves to be efficient since
reading and writing back the frames for each TLUT can be
avoided in contrast to the case of the conventional driver.

If the number of TLUTs in a parameterized design is
higher than what fits in a single CLB column then multiple
CLB columns containing multiple TLUTs can be used in
order to achieve the gain in reconfiguration speed.

The TLUTs can be forcibly placed in a single column
by using design placement constraints. However, the main
concern with using the placement constraints is the design
performance. Strict placement constraints would lead to
hindrance of the design performance. There will be a trade-
off between the reconfiguration speed and the design perfor-
mance which is investigated in Section 7.

5.2. Type 2: Read Once, Multimodify, and Multiwrite. The
type 1 reconfiguration driver can be further optimized at the
cost of DRAM memory. The memory is used as a cache to
store the frames that are read during a reconfiguration. We
have optimized the read frame activity for future reconfigu-
ration of the same TLUTs.

(1) Read Frames Once. With the help of the frame address,
four frames containing all the truth table entries of a column
of TLUTs and LUTs are read from the configurationmemory.
If there are multiple TLUTs placed in a single column,
the truth table values of multiple TLUTs are read with a
single read activity. Once the frames are read, each frame is
stored in DRAM memory of the Zynq-SoC. If the processor
has to reconfigure the same TLUTs at a later time, it can
directly access the frames from theDRAMmemory instead of

Table 1: Dimensions for the placement constraints.

16-tap FIR 32-tap FIR 64-tap FIR
Number of TLUTs
to be clustered 384 768 1536

Zynq-SoC 50 × 5 50 × 11 50 × 14
Note: the above dimensions are in the form of length × width of the CLB
columns. Each column contains 200 LUTs.

requesting the same frames from the configuration memory
via the ICAP. Since the data access from the DRAMmemory
is faster than the configuration memory, the read frame
activity can be bypassed for the future reconfigurations of the
same TLUTs.

The rest of the reconfiguration steps: multimodify and
multi-write-back frames remain unchanged. However, the
bitstream’s cache is updated for every write-back activity in
order to keep the cached bitstream consistent with the actual
configuration of the FPGA.

6. Placement Constraints

Themain aim of using placement constraints in our setting is
to force multiple TLUTs to cluster all their truth table entries
in a minimal number of frames. The placement constraints
are used to restrict where the design’s logic is placed. It
forces the placer to use a certain area of the FPGA. We have
described the correlation between the CLB columns and the
frame structure in Section 3. Our approach is to force more
TLUTs to be placed in a single CLB column so that their truth
table entries can be reconfigured with a minimal access of
configuration frames.

We have used the “AREA GROUP” constraint [12]. This
constraint allows us to specify that certain parts of the design
can only be placed in a predetermined rectangular region
of the FPGA’s CLBs. To determine the exact size of this
rectangular region the maximum length of the CLB column
and minimum width of the CLB rows have to be considered.
The maximum length of the CLB column is equal to its
height (50 for the Zynq-SoC) in a given clock region and it
ensures that more TLUTs can fit the specified area, while the
minimum CLB rows ensure that we use the minimal number
of CLB columns possible.

We first used the constraint to place the TLUTs in an
exact minimum number of CLB columns determined by the
number of LUTs present in it. For example, in the Zynq-
SoC each column has 200 LUTs. Therefore to place the 64-
tap FIR filter (1536 TLUTs), it is sufficient to use 8 columns.
However with 8 columns, the router was not able to route the
design. Hence we increased the width of the rectangular area
by increasing the number of columns until the router was able
to route the whole design. The width of the rectangular area
in terms of CLB columns for different configurations of the
FIR filter is tabulated in Table 1.

For a 64-tap FIR filter, the average number of TLUTs
clustered in a singleCLB columnof theZynq-SoC is 110which
is 52% of the total LUTs available in a single CLB column
and there are a maximum of 156 TLUTs clustered in a single

International Journal of Reconfigurable Computing 7

Table 2: TLUTs cluster rate of a 64-tap FIR filter in a single CLB
column.

Zynq-SoC
Average Maximum

Clustered TLUTs 52% 75%
Unclustered TLUTs 48% 25%

Table 3: FIR filter configurations.

Taps Multipliers TLUTs
16 32 384
32 64 768
64 128 1536

column which is 75%. The remaining LUTs are not a part of
the reconfiguration process and hence they are used for the
nonreconfigurable parts of the problem. Table 2 shows the
percentage of TLUTs clustered.

7. Experimental Setup

In order to evaluate the performance of the reconfiguration
controllers after using custom reconfiguration drivers, we
first set up a DCS system on a self-reconfigurable platform.
In this section, we describe the experimental setup of the
parameterized design implemented using DCS with different
reconfiguration controllers. We implemented the controllers
and used modified drivers (type 1 and type 2) on a self-
reconfigurable DCS platform and measured the reconfigura-
tion speed.

7.1. Parameterized FIR Filter. We implement an 8-bit FIR fil-
ter with three different tap configurations as a parameterized
design. Each filter tap contains two 4-bit multipliers and each
multiplier ismapped onto 12 TLUTs [3].We use the FIR filters
with different configurations as listed in Table 3.

Figure 6 shows the structure of the filter. All coefficients
form the parameterized inputs and for every change in the
coefficient value, a specialized bitstream is generated and
the filter taps containing multiplications are reconfigured
accordingly.

7.2. Self-Reconfigurable Platform. We have used a self-
reconfigurable platform [3] for implementing a parame-
terized FIR filter using DCS. Three different reconfigura-
tion controllers (HWICAP, MiCAP, and MiCAP-Pro, each
clocked at 100MHz) were used for individual experiments.
The platform is depicted in Figure 7.

We used a Zynq-SoC (XC7Z020-CLG484-1, ZedBoard)
FPGA and Xilinx XPS v14.7 for the project system builder.
The PPC Boolean functions are stored in the DRAMmemory
of the Processor System (PS) and all the actions of the
micro-reconfiguration are controlled by the ARMCortex-A9
processor (clocked at 667MHz). Therefore, the user can use
a simple program to run software on the processor to control
and measure the reconfiguration activity. The whole system

C1 C2 Ck−1 Ck

Input
x[n]

Output
y[n]

· · ·

+ + +

Figure 6: 𝑘-tap, 8-bit FIR filter.

Reconfiguration
controller

ARM
Cortex-A9 DRAM

Parameterized
FIR filter

AXI

Figure 7: A self-reconfigurable platform for DCS implementation.

is connected using the AXI bus (clocked at 100MHz) for the
data transfer.

7.3. Reconfiguration Speed Measurement. We measured the
reconfiguration speed of a single TLUT of a parameterized
design using soft-timers. We also evaluated the total time
to reconfigure all the TLUTs of the parameterized design
(total reconfiguration time). First the experiments were
conducted without placement constraints. The experiments
were performed using both types of reconfiguration software
drivers (type 1 and type 2) on individual reconfiguration con-
trollers separately. Further, the experiments were conducted
by constraining the TLUTs to cluster their truth table entries
in the same frames by using placement constraints.

Using placement constraints results in a reduction of
the design’s performance. Therefore, we have measured the
maximum clock frequency the design can support for the
experiments using placement constraints and without place-
ment constraints.

8. Results and Discussion

In this section, we present the results of our experiments.
Table 4 shows the reconfiguration time distribution of
a TLUT using three different reconfiguration controllers.
Clearly, MiCAP-Pro is the fastest reconfiguration controller
between all three controllers. In order to evaluate the effect of
using custom reconfiguration drivers on the three controllers,
we consider the total reconfiguration time (time taken to
reconfigure all the TLUTs of the DCS system).

8 International Journal of Reconfigurable Computing

Table 4: Reconfiguration time distribution of a single TLUT.

Reconfiguration controller Micro-reconfiguration task Time (𝜇s) TLUT reconfiguration time (𝜇s)

HWICAP
Read frames 111.5

234Boolean evaluate and modify 18
Write-back frame 100.5

MiCAP
Read frames 97

210Boolean evaluate and modify 18
Write-back frames 95

MiCAP-Pro
Read frames 23

64.1Boolean evaluate and modify 18
Write-back frames 23.1

Table 5: CLB columns TLUTs placed without placement con-
straints.

16-tap FIR 32-tap FIR 64-tap FIR
Number of
TLUTs to be
clustered

384 768 1536

CLB columns 25 42 50

There were 3 different experiments conducted on each of
the reconfiguration controllers:

(1) Experiments with type 1 reconfiguration drivers and
without placement constraints.

(2) Experiments with type 1 reconfiguration drivers and
with placement constraints.

(3) Experiments with type 2 reconfiguration drivers and
with placement constraints.

8.1. Experiments with Type 1 Reconfiguration Drivers and
without Placement Constraints. In this experiment, we have
not used placement constraints and hence the TLUTs were
automatically placed by the placer without constraints from
the user. The placer tool had full freedom to choose its own
place for the TLUTs in different CLB columns.

Table 5 shows the number of columns inwhich the TLUTs
were placed by the placer without any placement constraints.
Further investigations have shown that there were multiple
TLUTs placed for a given CLB column and therefore, we
can still use the principle of modifying multiple TLUTs for
a single read activity.

The TLUTs of the parameterized FIR filter design were
reconfigured with 3 different reconfiguration controllers. We
used custom reconfiguration drivers of type 1. The corre-
sponding time required to reconfigure all the TLUTs of the
parameterized design and the Improvement Factor (IF) is
tabulated in Table 6.

Clearly, there was a drastic reduction in the reconfigura-
tion time compared to the standard reconfiguration drivers.
The reconfiguration speed was improved drastically at least
by a factor of 12 for the HWICAP and the MiCAP. Similarly,
the improvement in reconfiguration speed by a factor of ≈8
was observed for the MiCAP-Pro. This improvement was

achieved since we overcome the reading of the same frames
that contain configuration of multiple TLUTs.

The data transfers between PS and PL regions of the
Zynq-SoC are the major bottleneck for the HWICAP and the
MiCAP. Therefore, bypassing the frame read activities in the
driver contributes a lot to the reconfiguration speed and is
the major reason for the improvement in the reconfiguration
speed.

Since we did not use any placement constraints, the
overall performance of the DCS system remains unchanged.

8.2. Experiments with Type 1 Reconfiguration Drivers and
with Placement Constraints. In this experiment, we force the
placer tool to place the maximum possible number of TLUTs
in an exact minimum number of CLB columns by using
“AREA GROUP” placement constraints. Table 1 shows the
minimum CLB columns in which the TLUTs were placed.

The parameterized design was reconfigured using type 1
drivers using three different controllers. The total reconfigu-
ration time is tabulated in Table 7.

Clearly, the reconfiguration speed was even further
improved by at least a factor ≈20 for the HWICAP and
MiCAP.The reconfiguration speed was improved at least by a
factor ≈8 for the MiCAP-Pro. The improvement is due to the
placement of TLUTs in a reduced number of CLB columns
compared to the previous experiment.

With the help of the placement constraints, the truth
table entries of multiple TLUTs were clustered in a single
CLB column. Therefore, this method gives an advantage of
modifying more TLUTs for a single frame read activity. The
type 1 driver exploits the advantage and reconfiguresmultiple
TLUTs thereby reducing the reconfiguration time.

The improvement in the reconfiguration speed comes at
the cost of a reduction in the design performance. Introduc-
ing the placement constraints causes the design to have a
longer critical path than the conventional implementation.
This causes a decrease in the maximum clock frequency the
design can support as observed in Table 8. Clearly, an increase
in the number of TLUTs decreases the design performance.
The overall average deterioration in design performance is
about 6MHz (or a deterioration of ≈6%).

8.3. Experiments with Type 2 ReconfigurationDrivers andwith
Placement Constraints. In this experiment, we used a custom

International Journal of Reconfigurable Computing 9

Table 6: Total reconfiguration time without placement constraints.

FIR filter taps TLUTs Reconfiguration controller Total reconfiguration time (ms) IF

16 384
HWICAP 88.3/7.4 12
MiCAP 80.6/6.9 12

MiCAP-Pro 24.6/3.3 8

32 768
HWICAP 176.6/13.1 13
MiCAP 161.2/12.2 13

MiCAP-Pro 49.2/6.2 8

64 1536
HWICAP 353.2/18.4 19
MiCAP 322.4/17.4 19

MiCAP-Pro 98.4/12.1 8
Note 1: the above timing values are in the form of normal reconf. drivers/custom type 1 reconf. drivers.
Note 2: IF stands for Improvement Factor.

Table 7: Total reconfiguration time with placement constraints.

FIR filter taps TLUTs Reconfiguration controller Total reconfiguration time (ms) IF

16 384
HWICAP 88.3/4.4 20
MiCAP 80.6/4.3 19

MiCAP-Pro 24.6/3.1 8

32 768
HWICAP 176.6/9 20
MiCAP 161.2/8.7 19

MiCAP-Pro 49.2/6 8

64 1536
HWICAP 353.2/16.4 22
MiCAP 322.4/16.1 20

MiCAP-Pro 98.4/9.6 10
Note 1: the above timing values are in the form of normal reconf. drivers/custom type 1 reconf. drivers.
Note 2: IF stands for Improvement Factor.

Table 8: Maximum clock the design can support on the Zynq-SoC.

16-tap FIR 32-tap FIR 64-tap FIR
Number of TLUTs to
be clustered 384 768 1536

Clock frequency in
MHz 108.6/102.8 108.6/102.2 108.6/101.2

Note: the above values are in the form without placement constraints/with
placement constraints.

reconfiguration driver of type 2. Introducing the placement
constraints reduces the number of CLB columns in which
the TLUTs are placed. When using a custom driver of type 2,
the frames that contain TLUT truth table entries are stored
in the DRAM of the Zynq-SoC after they are read during
the reconfiguration of the TLUTs for the first time. The
DRAM acts as a cache so that we can reuse the truth table
entries for reconfiguring the same TLUTs in future requests.
Therefore, we bypass the frame read activity and hence the
reconfiguration time is reduced.

Table 9 shows the reconfiguration time of the DCS
system after using the type 2 reconfiguration driver. Clearly,
we observe an improvement in reconfiguration speed by
12% compared to the type 1 driver. However, this small
improvement comes at the cost of memory that is used to
store the frames for reconfiguring the TLUTs. The DRAM

should store at least 404 words (1 word = 32 bits) of the frame
data to reconfigure multiple TLUTs present in a single CLB
column.

We limit the use of the type 2 driver to the experiments
with placement constraints only. This is because the number
of frames that contain truth table entries of TLUTs is small
compared to the number of frames without placement con-
straints and therefore it is worth storing minimum possible
frames rather than storing the frames that contain TLUTs
which are widespread across the multiple clock regions of the
FPGA.

For a 64-tap parameterized FIR filter, in order to store all
the frames (that contain truth table entries of 1536 TLUTs) in
the DRAMmemory, we need a memory space of 5656 words
(14 × 404 = 5656) or ≈23KB in the DRAMmemory.

The comparison of the reconfiguration time of the
parametrized FIR filter with 64 taps implemented using
DCS using different reconfiguration controllers is depicted in
Figure 8. The naming conventions used in Figures 8–11 are
described in Table 10.

Clearly, the TLUTs of the parameterized design are
reconfigured efficiently with less overhead of reconfiguration
time using custom reconfiguration controllers when used
along with custom type 1 and type 2 reconfiguration drivers.

8.4. Functional Density. The effect of variations in the recon-
figuration speed and the effect of introducing the placement

10 International Journal of Reconfigurable Computing

Table 9: Reconfiguration time using type 2 drivers.

FIR filter taps TLUTs Reconfiguration controller Total reconfiguration time (ms)

16 384
HWICAP 4.4/3.8
MiCAP 4.3/3.8

MiCAP-Pro 3.1/2.8

32 768
HWICAP 9/7.7
MiCAP 8.7/7.7

MiCAP-Pro 6/5.4

64 1536
HWICAP 16.4/14.7
MiCAP 16.1/14.7

MiCAP-Pro 9.6/9
Note: the above values are in the form of custom type 1 drivers/type 2 drivers.

Table 10: Naming convention for reconfiguration controllers.

Reconfiguration controllers Definition

(Reconf Controller)1
DCS system with
(Reconf Controller) and
standard reconfiguration driver
(read, single modify, and write).

(Reconf Controller)2

DCS system with
(Reconf Controller), with
custom type 1 reconfiguration
driver and without placement
constraints.

(Reconf Controller)3

DCS system with
(Reconf Controller), with
custom type 1 reconfiguration
driver, and with placement
constraints.

(Reconf Controller)4

DCS system with
(Reconf Controller), with
custom type 2 reconfiguration
driver, and with placement
constraints.

Note: (Reconf Controller) can be HWICAP, MiCAP, and MiCAP-Pro in the
above naming convention.

constraints to improve the reconfiguration speed in DCS can
be best explained using the functional density curve [13].The
functional density is defined as the number of computations
(𝑁) that can be performed per unit area (𝐴) and unit time (𝑇)
as shown in

𝐹
𝑑
=
𝑁

𝐴 × 𝑇
. (1)

In our experiments, the computations are all the operations
in the FIR filter.The value of “𝐴” depends on the resources of
the FPGA used by the FIR filter (mainly TLUTs). The value
of “𝑇” is the reconfiguration time, the execution time, and
the time to specialize. A higher functional density signifies a
more efficient usage of implementation area.

The functional density curve was plotted against the rate
of change of the input parameters for the parameterized
design implementation. We have plotted the functional den-
sity curve for each reconfiguration controller and observed

Re
co

nfi
gu

ra
tio

n
tim

e (
m

s)

M
iC

A
P1

M
iC

A
P3

M
iC

A
P4

M
iC

A
P2

H
W

IC
A

P3

H
W

IC
A

P2

H
W

IC
A

P4

H
W

IC
A

P1

M
iC

A
P-

Pr
o2

M
iC

A
P-

Pr
o3

M
iC

A
P-

Pr
o1

M
iC

A
P-

Pr
o4

Reconfiguration controllers

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380

Figure 8: Reconfiguration time comparison between standard
reconfiguration driver and custom reconfiguration drivers.

the variation in functional density of the DCS system after
using standard, custom type 1 without placement constraints
and type 1 and custom type 2 drivers with placement
constraints.

The functional density curves for the HWICAP, the
MiCAP, and theMiCAP-Pro are depicted in Figures 9, 10, and
11, respectively. The naming conventions for the reconfigura-
tion controllers are listed inTable 10.The𝑥-axis represents the
average time (in clock cycles) between two parameter value
changes. We observe a similar behavior of functional density
curves in the DCS systems implemented using three different
reconfiguration controllers.

The functional density for the DCS with custom type 1
driver (without placement constraints) rises well before the
functional density of the DCS that uses the standard recon-
figuration driver, introducing the placement constraints for
type 1 and type 2 customdrivers improves the reconfiguration
speed furthermore, and hence the corresponding functional
density curves rise earlier compared to the functional density
curve with standard reconfiguration drivers. This shows that
improving the reconfiguration speed allows the parameters
to change faster with the same gain in area compared to

International Journal of Reconfigurable Computing 11

×105

105 106 107 108 109104 10111010

Parameter reuse (clock cycles)

HWICAP2
HWICAP1 HWICAP3

HWICAP4

0

2

4

6

8

Fu
nc

tio
na

l d
en

sit
y

((
O

ps
/s

)/
LU

T)

Figure 9: Functional density curves for HWICAP with different
reconfiguration drivers.

×105

105 106 107 108 109104 10111010

Parameter reuse (clock cycles)

0

2

4

6

8

10

Fu
nc

tio
na

l d
en

sit
y

((
O

ps
/s

)/
LU

T)

MiCAP1
MiCAP2 MiCAP4

MiCAP3

Figure 10: Functional density curves for MiCAP with different
reconfiguration drivers.

DCS whose reconfiguration speed is slow. However, since
the design performance is slightly reduced due to placement
constraints, the magnitude of the functional density curves
is relatively lower compared to the DCS without placement
constraints forming the main trade-off.

The HWICAP and the MiCAP have similar functional
density curves (except the MiCAP has a higher magnitude
of functional density) since they have approximately equal
throughput [6]. Using the custom reconfiguration drivers
improves the reconfiguration speed drastically.

However, the functional density curves for the MiCAP-
Pro only show a small improvement in reconfiguration speed
after using type 1 and type 2 reconfiguration drivers. Since
the data throughput of the MiCAP-Pro is very high, the
effect of using custom reconfiguration drivers to improve
the reconfiguration speed is relatively lower. The impact of
using placement constraints can be also seen in the functional
density curves of the MiCAP-Pro.

×105

0

1

2

3

4

5

6

7

Fu
nc

tio
na

l d
en

sit
y

((
O

ps
/s

)/
LU

T)

105 106 107 108 109 1010104

Parameter reuse (clock cycles)

MiCAP-Pro2
MiCAP-Pro3MiCAP-Pro1
MiCAP-Pro4

Figure 11: Functional density curves for MiCAP-Pro with different
reconfiguration drivers.

Commercial applications such as Ternary Content
Addressable Memories (TCAMs) used for packet classifi-
cation in network routers [14] can benefit from DCS. An
entry (content) of the memory is an infrequently changing
input value and, therefore, can be used as a parameter
input. However, in the network routing if the content of the
TCAM has to be updated then the reconfiguration speed
plays an important role. If the reconfiguration speed is
too slow then it affects the network router’s performance.
The parameterized TCAMs can benefit from our proposed
methods and overcome the barrier of the reconfiguration
time without affecting the router’s performance.

9. Conclusion

In order to efficiently reconfigure the TLUTs of a DCS system
with less reconfiguration time overhead, we have proposed
two different custom reconfiguration software drivers: type
1 and type 2. The reconfiguration time can be further sup-
pressed using design placement constraints. We constrained
the TLUTs of the FIR filter within the minimal number of
columns possible.The custom reconfiguration drivers of type
1 were optimized to read and write the frames only once
to reconfigure multiple TLUT entries. Further, in custom
type 2 drivers, the frames that are read (during micro-
reconfiguration) are stored in DRAM memory. These stored
frames are used by the processor to modify the TLUTs in the
future reconfiguration of the same TLUTs, thus saving the
time to read the same frames for the future reconfiguration
requests.

The concept of optimization (type 1 and type 2) was
applied to the reconfiguration drivers of the custom reconfig-
uration controllers MiCAP and MiCAP-Pro. Improvements
in the reconfiguration speed were observed. We have shown
that there is a drastic improvement in the reconfiguration
speed but this comes at the cost of a slight reduction in
performance of the design (due to placement constraints).
The functional density curveswere used to analyze the impact

12 International Journal of Reconfigurable Computing

of using high speed reconfiguration controllers in the DCS
system.

The custom reconfiguration controllers MiCAP and
MiCAP-Pro can be accessed at [15] and [16], respectively.
The custom reconfiguration drivers type 1 and type 2 can be
accessed at [17] and [18], respectively.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

Thisworkwas supported by the EuropeanCommission in the
context of the H2020-FETHPC EXTRA project (no. 671653).
The authors would like to thank Dr. Karel Heyse, Dr. Tom
Davidson, Dr. Vipin Kizheppatt, and Dr. Robin Bonamy for
their timely advice and valuable suggestions.

References

[1] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford,
“Invited paper: enhanced architectures, design methodologies
and CAD tools for dynamic reconfiguration of Xilinx FPGAS,”
in Proceedings of the International Conference on Field Pro-
grammable Logic and Applications (FPL ’06), pp. 1–6, Madrid,
Spain, August 2006.

[2] K. Bruneel, W. Heirman, and D. Stroobandt, “Dynamic data
folding with parameterizable FPGA configurations,” ACM
Transactions on Design Automation of Electronic Systems, vol.
16, no. 4, pp. 1–29, 2011.

[3] K. Bruneel, F. Abouelella, and D. Stroobandt, “Automatically
mapping applications to a self-reconfiguring platform,” in
Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE ’09), pp. 964–969, Leuven,
Belgium, April 2009.

[4] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of
Partial Reconfiguration in FPGA systems: a survey and a cost
model,” ACM Transactions on Reconfigurable Technology and
Systems, vol. 4, pp. 1–24, 2011.

[5] A. Kulkarni, T. Davidson, K. Heyse, and D. Stroobandt,
“Improving reconfiguration speed for dynamic circuit spe-
cialization using placement constraints,” in Proceedings of the
International Conference on ReConFigurable Computing and
FPGAs (ReConFig ’14), pp. 1–6, Cancun, Mexico, December
2014.

[6] A. Kulkarni, V. Kizheppatt, and D. Stroobandt, “MiCAP: a
custom reconfiguration controller for dynamic circuit spe-
cialization,” in Proceedings of the International Conference on
ReConFigurable Computing and FPGAs (ReConFig ’15), pp. 1–6,
IEEE, Cancun, Mexico, December 2015.

[7] TLUT Tool Flow Based Dynamic Circuit Specialization, 2013,
https://github.com/UGent-HES/tlut flow.

[8] A. Kulkarni, K. Heyse, T. Davidson, and D. Stroobandt,
“Performance evaluation of dynamic circuit specialization on
Xilinx FPGAs,” in Proceedings of the FPGA World Conference,
Stockholm, Sweden, September 2014.

[9] 7 Series FPGAsConfiguration: User Guide, UG470 (v1.10), Xilinx
Inc, 2015.

[10] K. Vipin and S. A. Fahmy, “ZyCAP: efficient partial reconfigura-
tion management on the xilinx zynq,” IEEE Embedded Systems
Letters, vol. 6, no. 3, pp. 41–44, 2014.

[11] F. Duhem, F. Muller, and P. Lorenzini, “Reconfiguration time
overhead on field programmable gate arrays: reduction and cost
model,” IET Computers and Digital Techniques, vol. 6, no. 2, pp.
105–113, 2012.

[12] Xilinx,Constriants Guide (cgd 10.1), Xilinx, San Jose, Calif, USA,
2015.

[13] A. DeHon, Reconfigurable Architectures for General-Purpose
Computing, Massachusetts Institute of Technology Artificial
Intelligence Laboratory, 1996.

[14] K. Pagiamtzis and A. Sheikholeslami, “Content-Addressable
Memory (CAM) circuits and architectures: a tutorial and
survey,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp.
712–727, 2006.

[15] MiCAP: A custom Reconfiguration Controller for Dynamic
Circuit Specialization, 2015, https://github.com/UGent-HES/
MiCAP.

[16] MiCAP-Pro: A High Speed Custom Reconfiguration Controller
for Dynamic Circuit Specialization, 2015, https://github.com/
UGent-HES/MiCAP-Pro.

[17] Custom Reconfiguration Drivers for DCS (Type 1), 2015,
https://github.com/UGent-HES/Custom-Reconfiguration-Driv-
ers-for-DCS-Type-1.

[18] Custom Reconfiguration Drivers for DCS (Type 2), 2015,
https://github.com/UGent-HES/Custom-Reconfiguration-Driv-
ers-for-DCS-Type-2.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

