An FPGA-based High-Throughput Stream Join
Architecture

Charalabos Kritikakis, Grigorios Chrysos, Apostdimdlas, Dionisios N. Pnevmatikatos

Microprocessor and Hardware Laboratory
Technical University of Crete
Chania, Greece
babis k4@hotmail.congregory.chrysos@gmail.cqrdollas@ece.tuc.gpnevmati@ece.tuc.gr

Abstract—Stream join is a fundamental operation that
combines information from different high-speed anchigh-volume
data streams. This paper presents an FPGA-based aritécture
that maps the most performance-efficient stream jai algorithm,
i.e. ScaleJoin, to reconfigurable logic. The systenwas fully
implemented on a Convey HC-2ex hybrid computer ancthe
experimental performance evaluation shows that theroposed
system outperforms by up to one order of magnitudethe
corresponding fully optimized parallel software-bagd solution
running on a high-end 48-core multiprocessor platfan. The
proposed architecture can be used as a generic tetafe for
mapping stream processing algorithms to reconfiguriale logic,
taking into consideration real-world challenges.

Keywords— stream processing;
FPGA architecture

ScaleJoin; join operator

. INTRODUCTION

The data mining research area focuses on the &atraaf
previously unknown and potentially useful infornoatifrom
raw data. Modern data mining applications requéeal-time
processing of high-volume and high-speed data reseto
enhance the value of existing information resourcas
fundamental operator for the data stream mininipésstream
join operator. Stream join is used for correlatirige
information from different streams. As the streaim joperator
is computationally expensive, there are many wahks focus
on accelerating their processing workload usingridiged or
parallel frameworks. The ScaleJoin algorithm [1]aisnew,
parallel formulation of the stream join operatoatthuses a
shared-memory framework. The algorithm offers gedligh
performance results, outperforming any other stétibe-art
stream join implementation.

This work presents the first implementation of thest
performance efficient stream join operator, i.eal&&oin, on a
reconfigurable platform with impressive performanesults
when compared to highly optimized codes running o
multiprocessors. The contributions of this work:djethis is
the first hardware-based work, to the best of aupvkedge,
which proposes a reconfigurable architecture fer SlcaleJoin
stream join algorithm, ii) the proposed hardwarediha
architecture is scalable and generic as it can &= was
template for many other problems that correlatasting data,
i) the proposed architecture is extensible, askies advantage
of the parallelism that reconfigurable hardware offer and
iv) the implemented system achieves at least 4xebet

throughput data rates vs. the fastest stream jailti-threaded
solution and at least one order of magnitude higinecessing
rates than any other multi-core published solution.

The rest of the paper is organized as follows.iSedt and
[l make an introduction on the stream join problamd the
ScaleJoin algorithm. Section IV presents the pregos
hardware-based architecture of the ScaleJoin #hgori
Section V evaluates the performance of the proposed
architecture and compares its performance resduitis the
performance of previously presented works. Sectidn
presents the related software- and hardware-baseksvon
stream join operation, and Section VII draws theabasions of
this work.

Il. STREAMS AND STREAM JOIN

The streams consist of flowing tuples, which aredeted
as two components <v, t>, where v is a value (@taf values
depending on the application) and t is the timeptawhich
defines the order in the stream sequence. The dtiealr
infinite size of the streams and the need for tiead
processing leads to the limitation of processingaasubset of
the incoming tuples, i.e. processing over slidingetbased
windows.

The stream join operation takes place on streamiagder
timestamped tuples. During the join process betviZegtneams,
i.e. R and S, all the tuples from the R stream“coerelated”-
compared with all the tuples from the S streandimshe given
time-based window. Whenever the “correlation” betwewo
tuples is “successful”, a new output tuple is adatombining
the attributes of both input tuples. The stream jaigorithm
follows the three-step procedure, which is propdse&anget
al. [2]. Let Ws and W, be the time windows, which contain the
tuples from S and R streams, respectively, andvangiime
window size W, the three-step procedurd)isompare % with
all ts € W, ii) add & to W and iii) remove allite Wk : ti.ts <

Mete— W.

The stream join operator has high computational. cos
Given that the tuple rate is T tuples per second bioth
processing streams and the processing window SizVi
seconds, the system maintains W x T tuples, in.tbience, T
tuples have to be compared with W x T tuples ewsgond.
Thus, the total computations for the tuples of estcbam are
about W x T and the aggregate computational cost for both
streams is 2 x W x°T

Timestap-sorted Timestap-sorted,
ready input tuples

Timestap-sorted, Timestap-sorted,
output tuples ready output tuples
" /

input tuples

Merge the timestamp-sorted R
and S input streams into one
timestamp-sorted stream of
ready input tuples

i Merge the timestamp-sorted

| output streams of each PU into
1 one timestamp-sorted stream of
! ready output tuples

Fig. 1. Software-based Scalejoin algorithm implementatidn [

I1l. SCALEJOIN ALGORITHM

The ScaleJoin algorithm innovation is based orathstract
data type, namely ScaleGate. The ScaleGate careg¥dn
parallel various numbers of streams in a lock-fxeg. Also, it
distributes the incoming tuples to the paralleb#us without
the need of central coordination. Last, it is, alseed for
collecting the correlated output tuples from theaflal threads
to the final output.

The main processing unit for the ScaleJoin algorith
software-based implementation is the Processing)(@hl). As
referred above, the ScaleJoin algorithm distributbe
processing workload to n parallel PUs, which me#met
approximately 1/n of the overall comparisons iscexed by
each PU.

As shown in Fig. 1, the software implementation Bas
main modules. Firstly, the input ScaleGate modude,SGin,
receives the timestamp-sorted input tuples from aaying
number of physical input streams and merges them an
single-timestamp sorted stream of tuples. Next, sbeted
tuples are passed to the parallel processing umlisre the
main processing takes place. Lastly, the outputsupre sent
to the SGout ScaleGate module, which sends ouethsts.

IV. FPGA-BASED STREAM JOIN SYSTEM

This section presents the proposed
architecture for the ScaleJoin algorithm.

New R tuples

PUO PU1 PUN

S tuples

S tuples
R tuples

‘ Element 1

New S
tuples

Out1

R tuples

PUO

PU1

PUN

—

e fir= =

| "

-

Processing
Element 2

Out 2

Fig. 2. Reconfigurable StreamJoin architecture

FIFOS Out 1 FIFO Shared

Memory

Shared
Memory

Scaleloin | -
0
R —

FIFOR

[

- Output 1
Streams__|

Results

Stream
Tuples

] R FIFOS Out 1FIFO

R —

Output 2
Results

.| Stream
Streams — Tuples

— 3

Scaleloin

Out2 FIFO

FIFOR

Fig. 3. FPGA-based ScaleJoin architecture

A. ScaleJoin Module Architecture

The ScaleJoin module consists of two processingeasies
(PEs) that work in parallel, as shown in Fig. 2clE@ne of
them correlates N newly arrived tuples of a singfait stream
with the all the tuples from the other stream.

The processing phase is broken into stages. Firiky
newly arrived tuples for both streams are loadedthe
corresponding processing elements (PEs). Next, ttipées
from the S and the R streams, which are not ouldatee
streamed to the corresponding PE. The PUs comparénp
incoming tuples and if the comparison result isctassful”, a
new merged output tuple is created. The outputindtion is
kept into a FIFO at each PU, which is passed throag
network of MUXes to the PE output. When all tupke
streamed and no other results have to be sentttwan, the
processing phase finishes. In case the newly artivgles are
more than the available N PUs at each PE, the ghmoess is
repeated.

B. Reconfigurable ScaleJoin System
The presented reconfigurable architecture can éxghle

reconfigurabligh scalability and the performance advantagesithalware

can offer, if it is mapped on a reconfigurable falah with fast
data 1/O links and a large number of available hare
resources. Hence, we mapped the proposed archideatua
Convey HC-2ex FPGA-based server.

Fig. 3 presents the total system architecture Herstream
join processing. In our prototype platform, eacle af the 4
available FPGA devices maps a ScaleJoin module;hnias
256 PUs. We parallelized the problem by loadindedént
newly arrived tuples into each one of the availdbdaleJoin
modules. Thus, our implemented system could progess
parallel 1024 newly arrived tuples.

Initially, the newly arrived tuples are stored ihased
memory by parallel threads. Next, the tuples aesléd from
the RAM and they are streamed to the processingeglts via
FIFOs. Specifically, the Convey HC-2ex server hagparallel
memory controllers, which were used for concurrand
parallel access to the stored data. The PUs amgected in a
pipelined way, in order to make all the comparisoeeded
with the minimum amount of memory reads. Finallpcle
ScaleJoin module outputs the results into an ougiie® and
then the results are stored to the global sharedame

The proposed system can offer solution for everhdrig
throughput rates of the incoming streams. Spedificéne high
level of parallelism that hardware can offer an@ thigh
bandwidth data 1/O links that our proposed platfaoffers,
leads to the fact that the reconfigurable part lsarreloaded
with newly arrived tuples at the same rate-basedigo of
time, i.e. second. This reloading process can fdé&ee many
times during the same rate-based time portion.

Concluding, this section presented the hardwareebas

architecture of the ScaleJoin algorithm. The parailature of
the proposed architecture is based on three popasallel
processing of newly arrived tuples by the four Ede
FGPAs, the parallel processing of the two indepehdeeams
by the two Processing Elements and the intrinsialfeism
that the hardware offers.

o
o

u o
o O o

SW Multicore Scaleloin
m HW ScaleJoin(1 FPGA)
m HW Scaleloin (4 FPGAs)

w
o

comparisons/sec (x107)
N B
o o

iy
o

o

300 600

Window size (secs)

900

Fig. 4. Processing rate (comparisons/sec) for SW-basedoorgtScaleJoin
and FPGA-based solution ScaleJoin

V. SYSTEMEVALUATION

This section presents the performance results effitial
system.

A. Theoretical Performance bounds

As analyzed in Section IlI, considering that theldagrom
both streams arrive with a rate T tuples/sec arel time
processing window has size W, then the total numtdfer
cgmparisons that need to take place at each séséhd W x
T°[1].

B. Experimental setup

We tested and evaluated the proposed system vetbaiime
datasets that were used by previous works, i.deSma [1],
Celljoin [8] and Handshake joins [5, 6]. Speciflgalve used a
C code that generated random tuples according unifarm
distribution in the interval [1-10,000]. The gerterh tuples
were stored into Convey's RAM at each second. Nagthew
tuples of R and S streams were loaded to the repoable
part of the ScaleJoin module, while the older tspleere
streamed for processing. Last, the processor read
presented the stream join results at each second.

C. Performance Evaluation
As referred above, the reconfigurable architectuwas

mapped on a Convey HC-2ex server. The HC-2ex sasver

equipped with four Virtex 6 LX760 FPGA devices and-core
Intel Xeon CPU at 2.13 GHz with 24GB RAM. The reseu

N
(]

N
o

-
w

SW Multicore Scaleloin

-
o

B HW Scaleloin(1 FPGA)

tuples/sec (x103)

W HW Scaleloin (4 FPGAs)

v

o

300 600 900

Window size (secs)

Fig. 5. Throughput (tuples/sec) for SW-based multicore &kah and
FPGA-based solution ScaleJoin

utilization for the proposed architecture reachpgai130% of
the available resources (31% Slices, 15% BRAMSs)e Th
processing system is clocked at 80 MHz. On theratlaad,
the software-based reference system, as presemt§d,iis
equipped with a 2.6 GHz AMD Opteron 6230, 48 caresr 4

sockets and 64 GB RAM. Both systems’ performance wa

measured using two metrics, i.e. the numbers ofpesisons
per second and the throughput rate that the prdpsgstems
can achieve.
experimental results from runs on the respectia#fqims.

Fig. 4 shows the processing capabilities of theppsed
system. Specifically, we present the number of ammpns
per second, which take place by the implementetesss for
various input datasets. According to the perforreamsults in
[1], software-based reference system achieves zippately
up to 4 billion comparisons/sec for various progessvindow
sizes. On the other hand, the hardware-based systeroffer
up to 74 billion comparisons/sec. Hence, our pregalution
outperforms in terms of processing the best strgammulti-
core solution by a factor of 19x.

Fig. 5 shows the throughput achieved in tuplesseeond
for both systems. As the results indicate, therkdbnfigurable
system outperforms the fastest software-based cuouti
solution by at least a factor of 4x. Concluding gerformance
results in Fig. 4 and 5 reveal the scalability loé hardware
proposed solution.

D. Benchmark Performance Evaluation

This section compares the performance of the pespos
stream join implementation vs. other state-of-thesaulticore
solutions [1, 5, 6 and 8] under the same testimgrpaters, e.g.
window size.

As the results in Table | show, the FPGA-basedegys
seems to outperform any other previously proposedus join
solution by at least a factor of 2x as far as ttee@ssing rate.
In addition, according to Table I, our proposedusoh can
outperform any other state-of-the-art multicoreutioh by at
least one order of magnitude as far as the numbexexuted
comparisons on streaming data including /0 timastly,
there are some previous works [4, 7] which mapsthesam join
problem but they do not follow an open source berak to
compare with. Thus, we could not compare diredtty above
works with ours either due to the different nature the

The presented measurements are actual,

TABLE 1.

SWMULTICORE STREAM JOIN VS FPGABASED STREAM JOIN ONBENCHMARK EVALUATION

Handshake system

ScaleJoin system

CellJoin system

FPGA-based ScaleJoir]

Systems [5, 6] [1] 8] system
CPU Cores 40 48 9 1 CPU + 4 FPGAs
CPU type 2.2 GHz AMD Opteron 2.6 GHz AMD Opterg ABPand 8 SPEs 2.13 GHz Intel Xeon
Max Throughput Rate 5125 3000 2000 12800
(tuples/sec)
Max Processing Rate 15x10 4x10 i 74 x 16

(Comps/sec)

performance results that they presented or due h® t performance evaluation the proposed architectuemseto

unavailability of the datasets that they used.

VI. RELATED WORK

This section presents previously software and harew
based works that exist in literature for the str¢aimproblem.

A. Software based implementations

The first software-based implementation on stream j
problem was the Handshake algorithm [5, 6]. Thgoathm
can trivially be scaled up to handle large join daws, high
throughput rates, and compute-intensive join peadiE
Regarding processing throughput and latency, bétthese
implementations have significantly less processimgughput
than our proposed solution, as shown above.

B. Hardware based implementations

There are many previous hardware-based works earstr

join problem. To begin with, Halstead. al [3] introduces an

FPGA-based implementation that uses a hash-joinneng

achieving impressive performance results. @kal presented
M3Join in [4], which is a hardware solution thahiewes high
processing throughput rates. Authors in [5, 6] enésd the
reconfigurable implementations of
algorithm using an adaptive merging network. Initold, Oge

et al [7] proposes a scalable and order-agnostic haslwa

design of sliding-window aggregation and its impégration
on an FPGA. Last, Celljoin [8] is another implenaian of
window-based stream joins using a Cell processomveyer,
regarding its processing throughput both
implementations of Handshake join and ScaleJoipeyfdrm
this implementation.

VII. CONCLUSIONS

This work presented an FPGA-based system
implements a widely used stream data mining opera®.
stream join. To the best of our knowledge, thithésfirst work
that maps a stream join operator on a high-endi#RBGA
system. We presented and analyzed an efficiengnsiktle,
scalable and generic reconfigurable architecture¢hfe stream
join workload. The main characteristics of the pmegd
architecture are analyzed below: i) efficient asoading to the

the Handshaken joi [3]

software

thdf]

outperform any other state-of-the-art published ko)
extensible and scalable as the proposed archigectan be
easily extended and offer high performance achievisnand
iii) generic as it can be easily expanded to tackker stream-
based workloads on reconfigurable hardware. Conaidhis
work showed that FPGAs are particularly well suifed this
form of computation vs. software-based multicoréutians,
but fast I/O and the proper memory organizatiomeisessary in
order to fully realize these advantages.

ACKNOWLEDGMENT

This work was supported in part by the European
Commission in the context of the H2020-FETHPC EXTRA
project (No. 671653).

REFERENCES

[1] Gulisano, V., Nikolakopoulos, Y., PapatriantafiloM,, & Tsigas, P.
ScaleJoin: a Deterministic, DisjoirRarallel and SkewResilient
Stream Join. In Big Data (Big Data), 2015 IEEE inagional
Conference. IEEE.

[2] Kang, J., Naughton, J. F., & Viglas, S. D. (2003arbh). Evaluating
window joins over unbounded streams. In Data Ergging, 2003.
Proceedings. 19th International Conference on3pfp-352). IEEE.

Halstead, R. J., Sukhwani, B., Min, H., Thoennes, Mibe, P., Asaad,
S., & lyer, B. (2013, April). Accelerating join ogion for relational
databases with FPGAs. In Field-Programmable Cus@wmputing

Machines (FCCM), 2013 IEEE 21st Annual Internatidsymposium on
(pp. 17-20). IEEE.

[4] Qian, J. B., Xu, H. B., DONG, Y. S., Liu, X. J., Wang, Y. L. (2005).

FPGA acceleration window joins over multiple dateams. Journal of
Circuits, Systems, and Computers, 14(04), 813-830.

[5] Teubner, J., & Mueller, R. (2011, June). How soqdayers would do
stream joins. In Proceedings of the 2011 ACM SIGMDErnational
Conference on Management of data (pp. 625-636). ACM

[6] Roy, P., Teubner, J., & Gemulla, R. (2014). Lovefsty handshake
join.Proceedings of the VLDB Endowment, 7(9), 7Q®.7

Oge, Y., Yoshimi, M., Miyoshi, T., Kawashima, H.ie, H., &

Yoshinaga, T. (2013, December). An Efficient and alScle

Implementation of Sliding-Window Aggregate Operaton FPGA.

In Computing and Networking (CANDAR), 2013 Firsttdmational
Symposium on (pp. 112-121). IEEE.

[8] Gedik, B., Bordawekar, R. R., & Philip, S. Y. (200%LellJoin: a
parallel stream join operator for the cell proces$be VLDB
journal, 18(2), 501-519.

